7MO6 image
Deposition Date 2021-05-01
Release Date 2022-02-16
Last Version Date 2023-10-18
Entry Detail
PDB ID:
7MO6
Keywords:
Title:
Guanosine Monophosphate Synthase from Aspergillus fumigatus Af293
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:GMP synthase [glutamine-hydrolyzing]
Chain IDs:A, B
Chain Length:540
Number of Molecules:2
Biological Source:Aspergillus fumigatus Af293
Primary Citation
Structural insights into the antifungal drug target guanosine monophosphate synthase from Aspergillus fumigatus.
Acta Crystallogr D Struct Biol 78 248 259 (2022)
PMID: 35102890 DOI: 10.1107/S2059798321012031

Abstact

Purine biosynthesis is a fundamental cellular process that sustains life by maintaining the intracellular pool of purines for DNA/RNA synthesis and signal transduction. As an integral determinant of fungal survival and virulence, the enzymes in this metabolic pathway have been pursued as potential antifungal targets. Guanosine monophosphate (GMP) synthase has been identified as an attractive target as it is essential for virulence in the clinically prominent fungal pathogens Aspergillus fumigatus, Candida albicans and Cryptococcus neoformans. However, a lack of structural information on GMP synthase has hindered drug-design efforts. Here, the first structure of a GMP synthase of fungal origin, that from A. fumigatus (at 2.3 Å resolution), is presented. Structural analysis of GMP synthase shows a distinct absence of the D1 dimerization domain that is present in the human homologue. Interestingly, A. fumigatus GMP synthase adopts a dimeric state, as determined by native mass spectrometry and gel-filtration chromatography, in contrast to the monomeric human homologue. Analysis of the substrate-binding pockets of A. fumigatus GMP synthase reveals key differences in the ATP- and XMP-binding sites that can be exploited for species-specific inhibitor drug design. Furthermore, the inhibitory activities of the glutamine analogues acivicin (IC50 = 16.6 ± 2.4 µM) and 6-diazo-5-oxo-L-norleucine (IC50 = 29.6 ± 5.6 µM) against A. fumigatus GMP synthase are demonstrated. Together, these data provide crucial structural information required for specifically targeting A. fumigatus GMP synthase for future antifungal drug-discovery endeavours.

Legend

Protein

Chemical

Disease

Primary Citation of related structures