7M1R image
Deposition Date 2021-03-14
Release Date 2021-09-08
Last Version Date 2023-10-18
Entry Detail
PDB ID:
7M1R
Keywords:
Title:
Crystal structure of a 6-phospho-beta-galactosidase from Bacillus licheniformis
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.98 Å
R-Value Free:
0.18
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:6-phospho-beta-galactosidase
Chain IDs:A, B, C, D
Chain Length:480
Number of Molecules:4
Biological Source:Bacillus licheniformis
Ligand Molecules
Primary Citation
Differences in Gluco and Galacto Substrate-Binding Interactions in a Dual 6P beta-Glucosidase/6P beta-Galactosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis .
J.Chem.Inf.Model. 61 4554 4570 (2021)
PMID: 34423980 DOI: 10.1021/acs.jcim.1c00413

Abstact

Bacterial glycoside hydrolase 1 (GH1) enzymes with 6-phospho-β-galactosidase and 6-phospho-β-glucosidase activities have the important task of releasing phosphorylated and nonphosphorylated monosaccharides into the cytoplasm. Curiously, dual 6-phospho-β-galactosidase/6-phospho-β-glucosidase (dual-phospho) enzymes have broad specificity and are able to hydrolyze galacto- and gluco-derived substrates. This study investigates the structure and substrate specificity of a GH family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglC. The enzyme structure has been solved, and sequence analysis, molecular dynamics simulations, and binding free energy calculations offered evidence of dual-phospho activity. Both test ligands p-nitrophenyl-β-d-galactoside-6-phosphate (PNP6Pgal) and p-nitrophenyl-β-d-glucoside-6-phosphate (PNP6Pglc) demonstrated strong binding to BlBglC although the pose and interactions of the PNP6Pglc triplicates were slightly more consistent. Interestingly, known specificity-inducing residues, Gln23 and Trp433, bind strongly to the ligand O3 hydroxyl group in the PNP6Pgal-BlBglC complex and to the ligand O4 hydroxyl group in the PNP6Pglc-BlBglC complex. Additionally, the BlBglC-His124 residue is a major contributor of hydrogen bonds to the PNP6Pgal O3 hydroxyl group but does not form any hydrogen bonds with PNP6Pglc. On the other hand, BlBglC residues Tyr173, Tyr301, Gln302, and Thr321 form hydrogen bonds with PNP6Pglc but not PNP6Pgal. These findings provide important details of the broad specificity of dual-phospho activity GH1 enzymes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback