7KHL image
Deposition Date 2020-10-21
Release Date 2021-02-24
Last Version Date 2023-10-18
Entry Detail
PDB ID:
7KHL
Keywords:
Title:
BRD4-BD1 Compound6 (methyl 4-(3,5-difluoropyridin-2-yl)-10-methyl-7-((methylsulfonyl)methyl)-11-oxo-3,4,10,11-tetrahydro-1H-1,4,10-triazadibenzo[cd,f]azulene-6-carboxylate)
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.29 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Bromodomain-containing protein 4
Gene (Uniprot):BRD4
Chain IDs:A, B
Chain Length:149
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Antibody-Mediated Delivery of Chimeric BRD4 Degraders. Part 2: Improvement of In Vitro Antiproliferation Activity and In Vivo Antitumor Efficacy.
J.Med.Chem. 64 2576 2607 (2021)
PMID: 33596073 DOI: 10.1021/acs.jmedchem.0c01846

Abstact

Heterobifunctional compounds that direct the ubiquitination of intracellular proteins in a targeted manner via co-opted ubiquitin ligases have enormous potential to transform the field of medicinal chemistry. These chimeric molecules, often termed proteolysis-targeting chimeras (PROTACs) in the chemical literature, enable the controlled degradation of specific proteins via their direction to the cellular proteasome. In this report, we describe the second phase of our research focused on exploring antibody-drug conjugates (ADCs), which incorporate BRD4-targeting chimeric degrader entities. We employ a new BRD4-binding fragment in the construction of the chimeric ADC payloads that is significantly more potent than the corresponding entity utilized in our initial studies. The resulting BRD4-degrader antibody conjugates exhibit potent and antigen-dependent BRD4 degradation and antiproliferation activities in cell-based experiments. Multiple ADCs bearing chimeric BRD4-degrader payloads also exhibit strong, antigen-dependent antitumor efficacy in mouse xenograft assessments that employ several different tumor models.

Legend

Protein

Chemical

Disease

Primary Citation of related structures