7JXH image
Deposition Date 2020-08-27
Release Date 2021-09-08
Last Version Date 2024-11-13
Entry Detail
PDB ID:
7JXH
Title:
HER2 in complex with JBJ-08-178-01
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.27 Å
R-Value Free:
0.28
R-Value Work:
0.23
R-Value Observed:
0.24
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Receptor tyrosine-protein kinase erbB-2
Gene (Uniprot):ERBB2
Chain IDs:A (auth: B), B (auth: A), C, D, E, F, G, H
Chain Length:326
Number of Molecules:8
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
A Novel HER2-Selective Kinase Inhibitor Is Effective in HER2 Mutant and Amplified Non-Small Cell Lung Cancer.
Cancer Res. 82 1633 1645 (2022)
PMID: 35149586 DOI: 10.1158/0008-5472.CAN-21-2693

Abstact

UNLABELLED In-frame insertions in exon 20 of HER2 are the most common HER2 mutations in patients with non-small cell lung cancer (NSCLC), a disease in which approved EGFR/HER2 tyrosine kinase inhibitors (TKI) display poor efficiency and undesirable side effects due to their strong inhibition of wild-type (WT) EGFR. Here, we report a HER2-selective covalent TKI, JBJ-08-178-01, that targets multiple HER2 activating mutations, including exon 20 insertions as well as amplification. JBJ-08-178-01 displayed strong selectivity toward HER2 mutants over WT EGFR compared with other EGFR/HER2 TKIs. Determination of the crystal structure of HER2 in complex with JBJ-08-178-01 suggests that an interaction between the inhibitor and Ser783 may be responsible for HER2 selectivity. The compound showed strong antitumoral activity in HER2-mutant or amplified cancers in vitro and in vivo. Treatment with JBJ-08-178-01 also led to a reduction in total HER2 by promoting proteasomal degradation of the receptor. Taken together, the dual activity of JBJ-08-178-01 as a selective inhibitor and destabilizer of HER2 represents a combination that may lead to better efficacy and tolerance in patients with NSCLC harboring HER2 genetic alterations or amplification. SIGNIFICANCE This study describes unique mechanisms of action of a new mutant-selective HER2 kinase inhibitor that reduces both kinase activity and protein levels of HER2 in lung cancer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures