7JK9 image
Deposition Date 2020-07-28
Release Date 2021-03-17
Last Version Date 2024-05-15
Entry Detail
PDB ID:
7JK9
Keywords:
Title:
Helical filaments of plant light-dependent protochlorophyllide oxidoreductase (LPOR) bound to NADPH, Pchlide, and membrane
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.10 Å
Aggregation State:
FILAMENT
Reconstruction Method:
HELICAL
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Protochlorophyllide reductase B, chloroplastic
Gene (Uniprot):PORB
Chain IDs:A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U (auth: V), V (auth: W), W (auth: X), X (auth: Y), Y (auth: Z), Z (auth: AA), AA (auth: BA), BA (auth: CA), CA (auth: DA), DA (auth: EA), EA (auth: FA), FA (auth: GA), GA (auth: HA), HA (auth: IA), IA (auth: JA), JA (auth: KA), KA (auth: LA), LA (auth: MA), MA (auth: NA), NA (auth: OA)
Chain Length:401
Number of Molecules:40
Biological Source:Arabidopsis thaliana
Primary Citation
Photocatalytic LPOR forms helical lattices that shape membranes for chlorophyll synthesis.
Nat.Plants 7 437 444 (2021)
PMID: 33875834 DOI: 10.1038/s41477-021-00885-2

Abstact

Chlorophyll biosynthesis, crucial to life on Earth, is tightly regulated because its precursors are phototoxic1. In flowering plants, the enzyme light-dependent protochlorophyllide oxidoreductase (LPOR) captures photons to catalyse the penultimate reaction: the reduction of a double bond within protochlorophyllide (Pchlide) to generate chlorophyllide (Chlide)2,3. In darkness, LPOR oligomerizes to facilitate photon energy transfer and catalysis4,5. However, the complete three-dimensional structure of LPOR, the higher-order architecture of LPOR oligomers and the implications of these self-assembled states for catalysis, including how LPOR positions Pchlide and the co-factor NADPH, remain unknown. Here, we report the atomic structure of LPOR assemblies by electron cryo-microscopy. LPOR polymerizes with its substrates into helical filaments around constricted lipid bilayer tubes. Portions of LPOR and Pchlide insert into the outer membrane leaflet, targeting the product, Chlide, to the membrane for the final reaction site of chlorophyll biosynthesis. In addition to its crucial photocatalytic role, we show that in darkness LPOR filaments directly shape membranes into high-curvature tubules with the spectral properties of the prolamellar body, whose light-triggered disassembly provides lipids for thylakoid assembly. Moreover, our structure of the catalytic site challenges previously proposed reaction mechanisms6. Together, our results reveal a new and unexpected synergy between photosynthetic membrane biogenesis and chlorophyll synthesis in plants, orchestrated by LPOR.

Legend

Protein

Chemical

Disease

Primary Citation of related structures