7EZY image
Deposition Date 2021-06-02
Release Date 2022-01-12
Last Version Date 2025-08-06
Entry Detail
PDB ID:
7EZY
Keywords:
Title:
anti-CRISPR-associated Aca2
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.92 Å
R-Value Free:
0.23
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
P 41 21 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:anti-CRISPR-associated Aca2
Chain IDs:A, B
Chain Length:125
Number of Molecules:2
Biological Source:Oceanimonas smirnovii
Primary Citation
Molecular basis of transcriptional repression of anti-CRISPR by anti-CRISPR-associated 2.
Acta Crystallogr D Struct Biol 78 59 68 (2022)
PMID: 34981762 DOI: 10.1107/S2059798321011670

Abstact

CRISPR-Cas systems are well known host defense mechanisms that are conserved in bacteria and archaea. To counteract CRISPR-Cas systems, phages and viruses have evolved to possess multiple anti-CRISPR (Acr) proteins that can inhibit the host CRISPR-Cas system via different strategies. The expression of acr genes is controlled by anti-CRISPR-associated (Aca) proteins that bind to an upstream promoter and regulate the expression of acr genes during transcription. Although the role of Aca as a transcriptional repressor has been demonstrated, the mechanism of action of Aca has not been determined. Here, the molecular mechanism underlying the Aca2-mediated transcriptional control of acr genes was elucidated by determining the crystal structure of Aca2 from Oceanimonas smirnovii at a high resolution of 1.92 Å. Aca2 forms a dimer in solution, and dimerization of Aca2 is critical for specific promoter binding. The promoter-binding strategy of dimeric Aca2 was also revealed by performing mutagenesis studies. The atomic structure of the Aca family shown in this study provides insights into the fine regulation of host defense and immune-escape mechanisms and also demonstrates the conserved working mechanism of the Aca family.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback