7EAL image
Deposition Date 2021-03-07
Release Date 2021-07-21
Last Version Date 2023-11-29
Entry Detail
PDB ID:
7EAL
Title:
The structure of the A20-Binding Inhibitor of NF-kB 1 in complex with di-ubiquitin
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:ubiquitin
Gene (Uniprot):UBC
Chain IDs:A, D
Chain Length:152
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:TNFAIP3-interacting protein 1
Gene (Uniprot):TNIP1
Chain IDs:B, C, E, F
Chain Length:109
Number of Molecules:4
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Structural and Biochemical Basis for Higher-Order Assembly between A20-Binding Inhibitor of NF-kappa B 1 (ABIN1) and M1-Linked Ubiquitins.
J.Mol.Biol. 433 167116 167116 (2021)
PMID: 34161781 DOI: 10.1016/j.jmb.2021.167116

Abstact

Polyubiquitination is important in controlling NF-κB signaling. Excessive NF-κB activity has been linked to inflammatory disorders and autoimmune diseases, while ABIN1 could attenuate NF-κB activation to maintain immune homeostasis by utilizing UBAN to recognize linear (M1)-linked polyubiquitinated NF-κB activation mediators, including NEMO, IRAK1 and RIP1. PolyUb-mediated UBAN recruitment remains undetermined, since the recognition studies focused mostly on di-ubiquitin (diUb). Here we report three crystal structures of human ABIN1 UBAN (hABIN1UBAN) in complex with M1-linked diUb, triUb, and tetraUb, respectively. Notably, the hABIN1UBAN:diUb structure reveals that a diUb randomly binds one of the Ub-binding sites of the hABIN1UBAN dimer and leaves the other site vacant. Together with the ITC and gel-filtration analyses, we found that M1-triUb and M1-tetraUb adopt two unique conformations, instead of an elongated one, and they preferentially use the N-terminal two-Ub unit to bind the primary Ub-binding site of a hABIN1UBAN dimer and the C-terminal two-Ub unit to bind the secondary Ub-binding site of another hABIN1UBAN dimer. Especially, our results suggest that two ABIN1UBAN dimers cooperatively bind two UBAN-binding units of a tetraUb or vice versa. Since the UBAN family members share a conserved diUb-binding mode, our results suggest that M1-polyUb modification allows multiple copies of the two-tandem Ub unit to simultaneously coordinate multiple and/or different binding partners to increase their local concentrations and to facilitate the formation of a large signaling complex. Our study provides a structural-functional glimpse of M1-polyUb as a multiple-molecule binding platform to exert its intrinsic structural plasticity in mediating cellular signaling.

Legend

Protein

Chemical

Disease

Primary Citation of related structures