7AP2 image
Deposition Date 2020-10-15
Release Date 2020-10-28
Last Version Date 2024-01-31
Entry Detail
PDB ID:
7AP2
Keywords:
Title:
Neisseria gonorrhoeae Leucyl-tRNA Synthetase in Complex with Compound LeuS7HMDDA
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.25 Å
R-Value Free:
0.23
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Leucine--tRNA ligase
Mutagens:D454N
Chain IDs:A
Chain Length:877
Number of Molecules:1
Biological Source:Neisseria gonorrhoeae
Primary Citation
Synthesis and Biological Evaluation of 1,3-Dideazapurine-Like 7-Amino-5-Hydroxymethyl-Benzimidazole Ribonucleoside Analogues as Aminoacyl-tRNA Synthetase Inhibitors.
Molecules 25 ? ? (2020)
PMID: 33081246 DOI: 10.3390/molecules25204751

Abstact

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.

Legend

Protein

Chemical

Disease

Primary Citation of related structures