7ADI image
Entry Detail
PDB ID:
7ADI
Title:
KirBac3.1 W46R: role of a highly conserved tryptophan at the membrane-water interface of Kir channel
Biological Source:
PDB Version:
Deposition Date:
2020-09-15
Release Date:
2022-01-12
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.28
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Inward rectifier potassium channel Kirbac3.1
Mutations:W46R
Chain IDs:A, B
Chain Length:301
Number of Molecules:2
Biological Source:Magnetospirillum magnetotacticum
Primary Citation
Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain.
Int J Mol Sci 23 ? ? (2021)
PMID: 35008764 DOI: 10.3390/ijms23010335

Abstact

ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.

Legend

Protein

Chemical

Disease

Primary Citation of related structures