6ZOO image
Deposition Date 2020-07-07
Release Date 2021-06-16
Last Version Date 2025-04-09
Entry Detail
PDB ID:
6ZOO
Keywords:
Title:
Photosystem I reduced Plastocyanin Complex
Biological Source:
Source Organism:
Pisum sativum (Taxon ID: 3888)
Method Details:
Experimental Method:
Resolution:
2.74 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Chlorophyll a-b binding protein 6, chloroplastic
Gene (Uniprot):LHCA1
Chain IDs:M (auth: 1)
Chain Length:193
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Chlorophyll a-b binding protein, chloroplastic
Gene (Uniprot):lhaB
Chain IDs:N (auth: 2)
Chain Length:208
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Chlorophyll a-b binding protein 3, chloroplastic
Gene (Uniprot):lhca3
Chain IDs:O (auth: 3)
Chain Length:221
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Chlorophyll a-b binding protein P4, chloroplastic
Gene (Uniprot):lhcA-P4
Chain IDs:P (auth: 4)
Chain Length:198
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I P700 chlorophyll a apoprotein A1
Gene (Uniprot):psaA
Chain IDs:A
Chain Length:743
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I P700 chlorophyll a apoprotein A2
Gene (Uniprot):psaB
Chain IDs:B
Chain Length:733
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I iron-sulfur center
Gene (Uniprot):psaC
Chain IDs:C
Chain Length:80
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:PsaD
Chain IDs:D
Chain Length:143
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Putative uncharacterized protein
Chain IDs:E
Chain Length:66
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit III
Chain IDs:F
Chain Length:154
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:photosystem I reaction center
Chain IDs:G
Chain Length:97
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit VI,Photosystem I reaction center subunit VI
Chain IDs:H
Chain Length:93
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit VIII
Gene (Uniprot):psaI
Chain IDs:I
Chain Length:31
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit IX
Gene (Uniprot):psaJ
Chain IDs:J
Chain Length:42
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit X psaK
Chain IDs:K
Chain Length:81
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:PsaL domain-containing protein
Chain IDs:L
Chain Length:159
Number of Molecules:1
Biological Source:Pisum sativum
Polymer Type:polypeptide(L)
Molecule:Plastocyanin, chloroplastic
Gene (Uniprot):PETE
Chain IDs:Q (auth: P)
Chain Length:99
Number of Molecules:1
Biological Source:Pisum sativum
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
SNK A HIS modified residue
Primary Citation
Structure of plant photosystem I-plastocyanin complex reveals strong hydrophobic interactions.
Biochem.J. 478 2371 2384 (2021)
PMID: 34085703 DOI: 10.1042/BCJ20210267

Abstact

Photosystem I is defined as plastocyanin-ferredoxin oxidoreductase. Taking advantage of genetic engineering, kinetic analyses and cryo-EM, our data provide novel mechanistic insights into binding and electron transfer between PSI and Pc. Structural data at 2.74 Å resolution reveals strong hydrophobic interactions in the plant PSI-Pc ternary complex, leading to exclusion of water molecules from PsaA-PsaB/Pc interface once the PSI-Pc complex forms. Upon oxidation of Pc, a slight tilt of bound oxidized Pc allows water molecules to accommodate the space between Pc and PSI to drive Pc dissociation. Such a scenario is consistent with the six times larger dissociation constant of oxidized as compared with reduced Pc and mechanistically explains how this molecular machine optimized electron transfer for fast turnover.

Legend

Protein

Chemical

Disease

Primary Citation of related structures