6ZJL image
Deposition Date 2020-06-29
Release Date 2020-09-02
Last Version Date 2024-11-13
Entry Detail
PDB ID:
6ZJL
Title:
Respiratory complex I from Thermus thermophilus, NAD+ dataset, major state
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
4.30 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 1
Gene (Uniprot):nqo1
Chain IDs:A (auth: 1)
Chain Length:438
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 2
Gene (Uniprot):nqo2
Chain IDs:B (auth: 2)
Chain Length:181
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 3
Gene (Uniprot):nqo3
Chain IDs:C (auth: 3)
Chain Length:783
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 4
Gene (Uniprot):nqo4
Chain IDs:D (auth: 4)
Chain Length:409
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 5
Gene (Uniprot):nqo5
Chain IDs:E (auth: 5)
Chain Length:207
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 6
Gene (Uniprot):nqo6
Chain IDs:F (auth: 6)
Chain Length:181
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 15
Gene (Uniprot):nqo15
Chain IDs:H (auth: 7)
Chain Length:129
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 9
Gene (Uniprot):nqo9
Chain IDs:G (auth: 9)
Chain Length:182
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 7
Gene (Uniprot):nqo7
Chain IDs:I (auth: A)
Chain Length:119
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 8
Gene (Uniprot):nqo8
Chain IDs:O (auth: H)
Chain Length:365
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 10
Gene (Uniprot):nqo10
Chain IDs:J
Chain Length:176
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 11
Gene (Uniprot):nqo11
Chain IDs:K
Chain Length:95
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 12
Gene (Uniprot):nqo12
Chain IDs:L
Chain Length:606
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 13
Gene (Uniprot):nqo13
Chain IDs:M
Chain Length:469
Number of Molecules:1
Biological Source:Thermus thermophilus
Polymer Type:polypeptide(L)
Molecule:NADH-quinone oxidoreductase subunit 14
Gene (Uniprot):nqo14
Chain IDs:N
Chain Length:427
Number of Molecules:1
Biological Source:Thermus thermophilus
Primary Citation
Key role of quinone in the mechanism of respiratory complex I.
Nat Commun 11 4135 4135 (2020)
PMID: 32811817 DOI: 10.1038/s41467-020-17957-0

Abstact

Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I.

Legend

Protein

Chemical

Disease

Primary Citation of related structures