6Z0Z image
Entry Detail
PDB ID:
6Z0Z
Keywords:
Title:
Human wtSTING in complex with 3',3'-c-(2'FdAMP-2'FdAMP)
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2020-05-11
Release Date:
2021-05-19
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Stimulator of interferon protein
Chain IDs:A
Chain Length:204
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Ligand Strain and Its Conformational Complexity Is a Major Factor in the Binding of Cyclic Dinucleotides to STING Protein.
Angew.Chem.Int.Ed.Engl. 60 10172 10178 (2021)
PMID: 33616279 DOI: 10.1002/anie.202016805

Abstact

STING (stimulator of interferon genes) is a key regulator of innate immunity that has recently been recognized as a promising drug target. STING is activated by cyclic dinucleotides (CDNs) which eventually leads to expression of type I interferons and other cytokines. Factors underlying the affinity of various CDN analogues are poorly understood. Herein, we correlate structural biology, isothermal calorimetry (ITC) and computational modeling to elucidate factors contributing to binding of six CDNs-three pairs of natural (ribo) and fluorinated (2'-fluororibo) 3',3'-CDNs. X-ray structural analyses of six {STING:CDN} complexes did not offer any explanation for the different affinities of the studied ligands. ITC showed entropy/enthalpy compensation up to 25 kcal mol-1 for this set of similar ligands. The higher affinities of fluorinated analogues are explained with help of computational methods by smaller loss of entropy upon binding and by smaller strain (free) energy.

Legend

Protein

Chemical

Disease

Primary Citation of related structures