6XUB image
Deposition Date 2020-01-17
Release Date 2020-04-22
Last Version Date 2024-01-24
Entry Detail
PDB ID:
6XUB
Keywords:
Title:
Structure of coproheme decarboxylase from Corynebacterium diphteriae in complex with monovinyl monopropionyl deuteroheme
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.78 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Chlorite dismutase
Chain IDs:A, B, C, D, E
Chain Length:237
Number of Molecules:5
Biological Source:Corynebacterium diphtheriae
Ligand Molecules
Primary Citation
Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation.
Acs Catalysis 10 5405 5418 (2020)
PMID: 32440366 DOI: 10.1021/acscatal.0c00411

Abstact

Coproheme decarboxylases (ChdCs) catalyze the final step in heme b biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme b via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme depend on hydrogen peroxide and the presence of a catalytic tyrosine. Here we demonstrate that ChdCs from Actinobacteria are unique in using a histidine (H118 in ChdC from Corynebacterium diphtheriae, CdChdC) as a distal base in addition to the redox-active tyrosine (Y135). We present the X-ray crystal structures of coproheme-CdChdC and MMD-CdChdC, which clearly show (i) differences in the active site architecture between Firmicutes and Actinobacteria and (ii) rotation of the redox-active reaction intermediate (MMD) after formation of the vinyl group at position 2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen peroxide (k app = (4.90 ± 1.25) × 104 M-1 s-1). The resulting Compound I is rapidly converted to a catalytically active Compound I* (oxoiron(IV) Y135•) that initiates the radical decarboxylation reactions. As a consequence of the more efficient Compound I formation, actinobacterial ChdCs exhibit a higher catalytic efficiency in comparison to representatives from Firmicutes. On the basis of the kinetic data of wild-type CdChdC and the variants H118A, Y135A, and H118A/Y135A together with high-resolution crystal structures and molecular dynamics simulations, we present a molecular mechanism for the hydrogen peroxide dependent conversion of coproheme via MMD to heme b and discuss differences between ChdCs from Actinobacteria and Firmicutes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures