6X5M image
Entry Detail
PDB ID:
6X5M
Title:
Crystal structure of a stabilized PAN ENE bimolecular triplex with a GC-clamped polyA tail, in complex with Fab-BL-3,6.
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2020-05-26
Release Date:
2020-06-24
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.27
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 1
Macromolecular Entities
Polymer Type:polyribonucleotide
Description:ggcA9 RNA (12-MER)
Chain IDs:F (auth: A), H (auth: a)
Chain Length:12
Number of Molecules:2
Biological Source:synthetic construct
Polymer Type:polyribonucleotide
Description:ggPAN RNA (39-MER)
Chain IDs:E (auth: R), G (auth: r)
Chain Length:78
Number of Molecules:2
Biological Source:synthetic construct
Polymer Type:polypeptide(L)
Description:Heavy chain Fab Bl-3 6
Chain IDs:B (auth: h), C (auth: H)
Chain Length:225
Number of Molecules:2
Biological Source:Mus musculus
Polymer Type:polypeptide(L)
Description:Light chain Fab BL-3 6
Chain IDs:A (auth: l), D (auth: L)
Chain Length:215
Number of Molecules:2
Biological Source:Mus musculus
Ligand Molecules
Primary Citation
Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands.
Nucleic Acids Res. 49 13179 13193 (2021)
PMID: 34871450 DOI: 10.1093/nar/gkab1170

Abstact

Cellular and virus-coded long non-coding (lnc) RNAs support multiple roles related to biological and pathological processes. Several lncRNAs sequester their 3' termini to evade cellular degradation machinery, thereby supporting disease progression. An intramolecular triplex involving the lncRNA 3' terminus, the element for nuclear expression (ENE), stabilizes RNA transcripts and promotes persistent function. Therefore, such ENE triplexes, as presented here in Kaposi's sarcoma-associated herpesvirus (KSHV) polyadenylated nuclear (PAN) lncRNA, represent targets for therapeutic development. Towards identifying novel ligands targeting the PAN ENE triplex, we screened a library of immobilized small molecules and identified several triplex-binding chemotypes, the tightest of which exhibits micromolar binding affinity. Combined biophysical, biochemical, and computational strategies localized ligand binding to a platform created near a dinucleotide bulge at the base of the triplex. Crystal structures of apo (3.3 Å) and ligand-soaked (2.5 Å) ENE triplexes, which include a stabilizing basal duplex, indicate significant local structural rearrangements within this dinucleotide bulge. MD simulations and a modified nucleoside analog interference technique corroborate the role of the bulge and the base of the triplex in ligand binding. Together with recently discovered small molecules that reduce nuclear MALAT1 lncRNA levels by engaging its ENE triplex, our data supports the potential of targeting RNA triplexes with small molecules.

Legend

Protein

Chemical

Disease

Primary Citation of related structures