6V9S image
Deposition Date 2019-12-16
Release Date 2020-07-15
Last Version Date 2024-11-13
Entry Detail
PDB ID:
6V9S
Title:
Structure-based development of subtype-selective orexin 1 receptor antagonists
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.50 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.24
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Orexin receptor type 1,GlgA glycogen synthase chimera
Gene (Uniprot):HCRTR1, PAB2292
Chain IDs:A
Chain Length:553
Number of Molecules:1
Biological Source:Homo sapiens, Pyrococcus abyssi (strain GE5 / Orsay)
Primary Citation
Structure-based development of a subtype-selective orexin 1 receptor antagonist.
Proc.Natl.Acad.Sci.USA 117 18059 18067 (2020)
PMID: 32669442 DOI: 10.1073/pnas.2002704117

Abstact

Orexins are neuropeptides that activate the rhodopsin-like G protein-coupled receptors OX1R and OX2R. The orexin system plays an important role in the regulation of the sleep-wake cycle and the regulation of feeding and emotions. The nonselective orexin receptor antagonist suvorexant has been the first drug on the market targeting the orexin system and is prescribed for the treatment of insomnia. Subtype-selective OX1R antagonists are valuable tools to further investigate the functions and physiological role of the OX1R in vivo and promising lead compounds for the treatment of drug addiction, anxiety, pain or obesity. Starting from the OX1R and OX2R crystal structures bound to suvorexant, we exploited a single amino acid difference in the orthosteric binding site by using molecular docking and structure-based drug design to optimize ligand interactions with the OX1R while introducing repulsive interactions with the OX2R. A newly established enantiospecific synthesis provided ligands showing up to 75-fold selectivity for the OX1R over the OX2R subtype. The structure of a new OX1R antagonist with subnanomolar affinity (JH112) was determined by crystallography in complex with the OX1R and corresponded closely to the docking-predicted geometry. JH112 exhibits high selectivity over a panel of different GPCRs, is able to cross the blood-brain barrier and acts as slowly diffusing and insurmountable antagonist for Gq protein activation and in particular β-arrestin-2 recruitment at OX1R. This study demonstrates the potential of structure-based drug design to develop more subtype-selective GPCR ligands with potentially reduced side effects and provides an attractive probe molecule and lead compound.

Legend

Protein

Chemical

Disease

Primary Citation of related structures