6V6Y image
Deposition Date 2019-12-06
Release Date 2020-05-27
Last Version Date 2023-10-11
Entry Detail
PDB ID:
6V6Y
Keywords:
Title:
Crystal Structure of T. thermophilus methylenetetrahydrofolate dehydrogenase (MTHFD)
Biological Source:
Method Details:
Experimental Method:
Resolution:
2.15 Å
R-Value Free:
0.24
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Bifunctional protein FolD
Gene (Uniprot):folD
Chain IDs:A
Chain Length:277
Number of Molecules:1
Biological Source:Thermus thermophilus (strain HB8 / ATCC 27634 / DSM 579)
Ligand Molecules
Primary Citation
Crystal structure of Thermus thermophilus methylenetetrahydrofolate dehydrogenase and determinants of thermostability.
Plos One 15 e0232959 e0232959 (2020)
PMID: 32401802 DOI: 10.1371/journal.pone.0232959

Abstact

The elucidation of mechanisms behind the thermostability of proteins is extremely important both from the theoretical and applied perspective. Here we report the crystal structure of methylenetetrahydrofolate dehydrogenase (MTHFD) from Thermus thermophilus HB8, a thermophilic model organism. Molecular dynamics trajectory analysis of this protein at different temperatures (303 K, 333 K and 363 K) was compared with homologous proteins from the less temperature resistant organism Thermoplasma acidophilum and the mesophilic organism Acinetobacter baumannii using several data reduction techniques like principal component analysis (PCA), residue interaction network (RIN) analysis and rotamer analysis. These methods enabled the determination of important residues for the thermostability of this enzyme. The description of rotamer distributions by Gini coefficients and Kullback-Leibler (KL) divergence both revealed significant correlations with temperature. The emerging view seems to indicate that a static salt bridge/charged residue network plays a fundamental role in the temperature resistance of Thermus thermophilus MTHFD by enhancing both electrostatic interactions and entropic energy dispersion. Furthermore, this analysis uncovered a relationship between residue mutations and evolutionary pressure acting on thermophilic organisms and thus could be of use for the design of future thermostable enzymes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures