6V2N image
Entry Detail
PDB ID:
6V2N
Keywords:
Title:
Crystal structure of E. coli phosphoenolpyruvate carboxykinase mutant Lys254Ser
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2019-11-25
Release Date:
2019-12-25
Method Details:
Experimental Method:
Resolution:
1.65 Å
R-Value Free:
0.17
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Phosphoenolpyruvate carboxykinase (ATP)
Chain IDs:A
Chain Length:540
Number of Molecules:1
Biological Source:Escherichia coli
Primary Citation
Kinetic and structural analysis of Escherichia coli phosphoenolpyruvate carboxykinase mutants.
Biochim Biophys Acta Gen Subj 1864 129517 129517 (2020)
PMID: 31911238 DOI: 10.1016/j.bbagen.2020.129517

Abstact

BACKGROUND Phosphoenolpyruvate carboxykinase (PEPCK) is a metabolic enzyme in the gluconeogenesis pathway, where it catalyzes the reversible conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) and CO2. The substrates for Escherichia coli PEPCK are OAA and MgATP, with Mn2+ acting as a cofactor. Analysis of PEPCK structures have revealed amino acid residues involved in substrate/cofactor coordination during catalysis. METHODS Key residues involved in coordinating the different substrates and cofactor bound to E. coli PEPCK were mutated. Purified mutant enzymes were used for kinetic assays. The structure of some mutant enzymes were determined using X-ray crystallography. RESULTS Mutation of residues D269 and H232, which comprise part of the coordination sphere of Mn2+, reduced kcat by 14-fold, and significantly increased the Km values for Mn2+ and OAA. Mutation of K254 a key residue in the P-loop motif that interacts with MgATP, significantly elevated the Km value for MgATP and reduced kcat. R65 and R333 are key residues that interacts with OAA. The R65Q and R333Q mutations significantly increased the Km value for OAA and reduced kcat respectively. CONCLUSIONS Our results show that mutation of residues involved in coordinating OAA, MgATP and Mn2+ significantly reduce PEPCK activity. K254 plays an important role in phosphoryl transfer, while R333 is involved in both OAA decarboxylation and phosphoryl transfer by E. coli PEPCK. GENERAL SIGNIFICANCE In higher organisms including humans, PEPCK helps to regulate blood glucose levels, hence PEPCK is a potential drug target for patients with non-insulin dependent diabetes mellitus.

Legend

Protein

Chemical

Disease

Primary Citation of related structures