6USC image
Entry Detail
PDB ID:
6USC
Title:
Structure of Human Intelectin-1 in complex with KO
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2019-10-25
Release Date:
2020-01-22
Method Details:
Experimental Method:
Resolution:
1.59 Å
R-Value Free:
0.18
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 21 3
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Intelectin-1
Chain IDs:A, B
Chain Length:279
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Stereoelectronic Effects Impact Glycan Recognition.
J.Am.Chem.Soc. 142 2386 2395 (2020)
PMID: 31930911 DOI: 10.1021/jacs.9b11699

Abstact

Recognition of distinct glycans is central to biology, and lectins mediate this function. Lectin glycan preferences are usually centered on specific monosaccharides. In contrast, human intelectin-1 (hItln-1, also known as Omentin-1) is a soluble lectin that binds a range of microbial sugars, including β-d-galactofuranose (β-Galf), d-glycerol 1-phosphate, d-glycero-d-talo-oct-2-ulosonic acid (KO), and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO). Though these saccharides differ dramatically in structure, they share a common feature-an exocyclic vicinal diol. How and whether such a small fragment is sufficient for recognition was unclear. We tested several glycans with this epitope and found that l-glycero-α-d-manno-heptose and d-glycero-α-d-manno-heptose possess the critical diol motif yet bind weakly. To better understand hItln-1 recognition, we determined the structure of the hItln-1·KO complex using X-ray crystallography, and our 1.59 Å resolution structure enabled unambiguous assignment of the bound KO conformation. This carbohydrate conformation was present in >97% of the KDO/KO structures in the Protein Data Bank. Bioinformatic analysis revealed that KO and KDO adopt a common conformation, while heptoses prefer different conformers. The preferred conformers of KO and KDO favor hItln-1 engagement, but those of the heptoses do not. Natural bond orbital (NBO) calculations suggest these observed conformations, including the side chain orientations, are stabilized by not only steric but also stereoelectronic effects. Thus, our data highlight a role for stereoelectronic effects in dictating the specificity of glycan recognition by proteins. Finally, our finding that hItln-1 avoids binding prevalent glycans with a terminal 1,2-diol (e.g., N-acetyl-neuraminic acid and l-glycero-α-d-manno-heptose) suggests the lectin has evolved to recognize distinct bacterial species.

Legend

Protein

Chemical

Disease

Primary Citation of related structures