6U8Y image
Entry Detail
PDB ID:
6U8Y
EMDB ID:
Title:
Structure of the membrane-bound sulfane sulfur reductase (MBS), an archaeal respiratory membrane complex
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2019-09-06
Release Date:
2020-09-09
Method Details:
Experimental Method:
Resolution:
4.00 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Monovalent cation/H+ antiporter subunit E
Chain IDs:A, N (auth: a)
Chain Length:168
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:Monovalent cation/H+ antiporter subunit F
Chain IDs:B, O (auth: b)
Chain Length:84
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:Monovalent cation/H+ antiporter subunit G
Chain IDs:C, P (auth: c)
Chain Length:124
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:DUF4040 domain-containing protein
Chain IDs:D, Q (auth: d)
Chain Length:94
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:Monovalent cation/H+ antiporter subunit B
Chain IDs:E, R (auth: e)
Chain Length:235
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:Monovalent cation/H+ antiporter subunit C
Chain IDs:F (auth: G), S (auth: g)
Chain Length:114
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit N
Chain IDs:G (auth: H), T (auth: h)
Chain Length:493
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit B
Chain IDs:I (auth: J), V (auth: j)
Chain Length:192
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit C
Chain IDs:J (auth: K), W (auth: k)
Chain Length:174
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit D
Chain IDs:K (auth: L), X (auth: l)
Chain Length:391
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit
Chain IDs:L (auth: M), Y (auth: m)
Chain Length:309
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit I
Chain IDs:M (auth: N), Z (auth: n)
Chain Length:208
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Polymer Type:polypeptide(L)
Description:NADH dehydrogenase subunit M
Chain IDs:H (auth: X), U (auth: x)
Chain Length:618
Number of Molecules:2
Biological Source:Pyrococcus furiosus COM1
Ligand Molecules
Primary Citation
Structure of the respiratory MBS complex reveals iron-sulfur cluster catalyzed sulfane sulfur reduction in ancient life.
Nat Commun 11 5953 5953 (2020)
PMID: 33230146 DOI: 10.1038/s41467-020-19697-7

Abstact

Modern day aerobic respiration in mitochondria involving complex I converts redox energy into chemical energy and likely evolved from a simple anaerobic system now represented by hydrogen gas-evolving hydrogenase (MBH) where protons are the terminal electron acceptor. Here we present the cryo-EM structure of an early ancestor in the evolution of complex I, the elemental sulfur (S0)-reducing reductase MBS. Three highly conserved protein loops linking cytoplasmic and membrane domains enable scalable energy conversion in all three complexes. MBS contains two proton pumps compared to one in MBH and likely conserves twice the energy. The structure also reveals evolutionary adaptations of MBH that enabled S0 reduction by MBS catalyzed by a site-differentiated iron-sulfur cluster without participation of protons or amino acid residues. This is the simplest mechanism proposed for reduction of inorganic or organic disulfides. It is of fundamental significance in the iron and sulfur-rich volcanic environments of early earth and possibly the origin of life. MBS provides a new perspective on the evolution of modern-day respiratory complexes and of catalysis by biological iron-sulfur clusters.

Legend

Protein

Chemical

Disease

Primary Citation of related structures