6U28 image
Deposition Date 2019-08-19
Release Date 2020-04-22
Last Version Date 2023-10-11
Entry Detail
PDB ID:
6U28
Keywords:
Title:
Crystal structure of 1918 NS1-ED W187A in complex with the p85-beta-iSH2 domain of human PI3K
Biological Source:
Method Details:
Experimental Method:
Resolution:
2.95 Å
R-Value Free:
0.23
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Non-structural protein 1
Gene (Uniprot):NS
Mutagens:W187A
Chain IDs:A, C (auth: B)
Chain Length:145
Number of Molecules:2
Biological Source:Influenza A virus (strain A/Brevig Mission/1/1918 H1N1)
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Phosphatidylinositol 3-kinase regulatory subunit beta
Gene (Uniprot):PIK3R2
Mutagens:C501S
Chain IDs:B (auth: C), D
Chain Length:165
Number of Molecules:2
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Molecular recognition of a host protein by NS1 of pandemic and seasonal influenza A viruses.
Proc.Natl.Acad.Sci.USA 117 6550 6558 (2020)
PMID: 32152123 DOI: 10.1073/pnas.1920582117

Abstact

The 1918 influenza A virus (IAV) caused the most severe flu pandemic in recorded human history. Nonstructural protein 1 (NS1) is an important virulence factor of the 1918 IAV. NS1 antagonizes host defense mechanisms through interactions with multiple host factors. One pathway by which NS1 increases virulence is through the activation of phosphoinositide 3-kinase (PI3K) by binding to its p85β subunit. Here we present the mechanism underlying the molecular recognition of the p85β subunit by 1918 NS1. Using X-ray crystallography, we determine the structure of 1918 NS1 complexed with p85β of human PI3K. We find that the 1918 NS1 effector domain (1918 NS1ED) undergoes a conformational change to bind p85β. Using NMR relaxation dispersion and molecular dynamics simulation, we identify that free 1918 NS1ED exists in a dynamic equilibrium between p85β-binding-competent and -incompetent conformations in the submillisecond timescale. Moreover, we discover that NS1ED proteins of 1918 (H1N1) and Udorn (H3N2) strains exhibit drastically different conformational dynamics and binding kinetics to p85β. These results provide evidence of strain-dependent conformational dynamics of NS1. Using kinetic modeling based on the experimental data, we demonstrate that 1918 NS1ED can result in the faster hijacking of p85β compared to Ud NS1ED, although the former has a lower affinity to p85β than the latter. Our results suggest that the difference in binding kinetics may impact the competition with cellular antiviral responses for the activation of PI3K. We anticipate that our findings will increase the understanding of the strain-dependent behaviors of influenza NS1 proteins.

Legend

Protein

Chemical

Disease

Primary Citation of related structures