6TTZ image
Entry Detail
PDB ID:
6TTZ
Keywords:
Title:
Structure of the ClpP:ADEP4-complex from Staphylococcus aureus (open state)
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2019-12-30
Release Date:
2020-03-25
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 65 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ATP-dependent Clp protease proteolytic subunit
Chain IDs:A, B, C, D, E, F, G
Chain Length:203
Number of Molecules:7
Biological Source:Staphylococcus aureus
Ligand Molecules
Primary Citation
Functional Characterisation of ClpP Mutations Conferring Resistance to Acyldepsipeptide Antibiotics in Firmicutes.
Chembiochem 21 1997 2012 (2020)
PMID: 32181548 DOI: 10.1002/cbic.201900787

Abstact

Acyldepsipeptide (ADEP) is an exploratory antibiotic with a novel mechanism of action. ClpP, the proteolytic core of the caseinolytic protease, is deregulated towards unrestrained proteolysis. Here, we report on the mechanism of ADEP resistance in Firmicutes. This bacterial phylum contains important pathogens that are relevant for potential ADEP therapy. For Staphylococcus aureus, Bacillus subtilis, enterococci and streptococci, spontaneous ADEP-resistant mutants were selected in vitro at a rate of 10-6 . All isolates carried mutations in clpP. All mutated S. aureus ClpP proteins characterised in this study were functionally impaired; this increased our understanding of the mode of operation of ClpP. For molecular insights, crystal structures of S. aureus ClpP bound to ADEP4 were determined. Well-resolved N-terminal domains in the apo structure allow the pore-gating mechanism to be followed. The compilation of mutations presented here indicates residues relevant for ClpP function and suggests that ADEP resistance will occur at a lower rate during the infection process.

Legend

Protein

Chemical

Disease

Primary Citation of related structures