6TBB image
Entry Detail
PDB ID:
6TBB
Title:
Crystal structure of S. aureus FabI in complex with NADPH and kalimantacin A (batumin)
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2019-11-01
Release Date:
2020-04-01
Method Details:
Experimental Method:
Resolution:
2.45 Å
R-Value Free:
0.24
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Enoyl-[acyl-carrier-protein] reductase [NADPH]
Chain IDs:A, B, C, D, E, F, G, H
Chain Length:261
Number of Molecules:8
Biological Source:Staphylococcus aureus
Primary Citation
The Kalimantacin Polyketide Antibiotics Inhibit Fatty Acid Biosynthesis in Staphylococcus aureus by Targeting the Enoyl-Acyl Carrier Protein Binding Site of FabI.
Angew.Chem.Int.Ed.Engl. 59 10549 10556 (2020)
PMID: 32208550 DOI: 10.1002/anie.201915407

Abstact

The enoyl-acyl carrier protein reductase enzyme FabI is essential for fatty acid biosynthesis in Staphylococcus aureus and represents a promising target for the development of novel, urgently needed anti-staphylococcal agents. Here, we elucidate the mode of action of the kalimantacin antibiotics, a novel class of FabI inhibitors with clinically-relevant activity against multidrug-resistant S. aureus. By combining X-ray crystallography with molecular dynamics simulations, in vitro kinetic studies and chemical derivatization experiments, we characterize the interaction between the antibiotics and their target, and we demonstrate that the kalimantacins bind in a unique conformation that differs significantly from the binding mode of other known FabI inhibitors. We also investigate mechanisms of acquired resistance in S. aureus and identify key residues in FabI that stabilize the binding of the antibiotics. Our findings provide intriguing insights into the mode of action of a novel class of FabI inhibitors that will inspire future anti-staphylococcal drug development.

Legend

Protein

Chemical

Disease

Primary Citation of related structures