6R02 image
Deposition Date 2019-03-12
Release Date 2019-08-07
Last Version Date 2024-01-24
Entry Detail
PDB ID:
6R02
Keywords:
Title:
Psychrobacter arcticus ATP phosphoribosyltransferase bound to histidine and PRPP
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.65 Å
R-Value Free:
0.27
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP phosphoribosyltransferase regulatory subunit
Gene (Uniprot):hisZ
Chain IDs:A, B, C, D
Chain Length:388
Number of Molecules:4
Biological Source:Psychrobacter arcticus
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:ATP phosphoribosyltransferase
Gene (Uniprot):hisG
Chain IDs:E, F, G, H
Chain Length:232
Number of Molecules:4
Biological Source:Psychrobacter arcticus
Primary Citation
Mapping the Structural Path for Allosteric Inhibition of a Short-Form ATP Phosphoribosyltransferase by Histidine.
Biochemistry 58 3078 3086 (2019)
PMID: 31251578 DOI: 10.1021/acs.biochem.9b00282

Abstact

ATP phosphoribosyltransferase (ATPPRT) catalyzes the first step of histidine biosynthesis, being allosterically inhibited by the final product of the pathway. Allosteric inhibition of long-form ATPPRTs by histidine has been extensively studied, but inhibition of short-form ATPPRTs is poorly understood. Short-form ATPPRTs are hetero-octamers formed by four catalytic subunits (HisGS) and four regulatory subunits (HisZ). HisGS alone is catalytically active and insensitive to histidine. HisZ enhances catalysis by HisGS in the absence of histidine but mediates allosteric inhibition in its presence. Here, steady-state and pre-steady-state kinetics establish that histidine is a noncompetitive inhibitor of short-form ATPPRT and that inhibition does not occur by dissociating HisGS from the hetero-octamer. The crystal structure of ATPPRT in complex with histidine and the substrate 5-phospho-α-d-ribosyl-1-pyrophosphate was determined, showing histidine bound solely to HisZ, with four histidine molecules per hetero-octamer. Histidine binding involves the repositioning of two HisZ loops. The histidine-binding loop moves closer to histidine to establish polar contacts. This leads to a hydrogen bond between its Tyr263 and His104 in the Asp101-Leu117 loop. The Asp101-Leu117 loop leads to the HisZ-HisGS interface, and in the absence of histidine, its motion prompts HisGS conformational changes responsible for catalytic activation. Following histidine binding, interaction with the histidine-binding loop may prevent the Asp101-Leu117 loop from efficiently sampling conformations conducive to catalytic activation. Tyr263Phe-PaHisZ-containing PaATPPRT, however, is less susceptible though not insensitive to histidine inhibition, suggesting the Tyr263-His104 interaction may be relevant to yet not solely responsible for transmission of the allosteric signal.

Legend

Protein

Chemical

Disease

Primary Citation of related structures