6QHD image
Deposition Date 2019-01-16
Release Date 2019-06-19
Last Version Date 2024-11-20
Entry Detail
PDB ID:
6QHD
Keywords:
Title:
Lysine acetylated and tyrosine phosphorylated STAT3 in a complex with DNA
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.85 Å
R-Value Free:
0.34
R-Value Work:
0.29
R-Value Observed:
0.29
Space Group:
P 41
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Signal transducer and activator of transcription 3
Gene (Uniprot):STAT3
Chain IDs:A, B
Chain Length:596
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polydeoxyribonucleotide
Molecule:DNA (5'-D(*AP*AP*GP*AP*TP*TP*TP*AP*CP*GP*GP*GP*AP*AP*AP*TP*GP*C)-3')
Chain IDs:C
Chain Length:18
Number of Molecules:1
Biological Source:Murine adenovirus 1
Polymer Type:polydeoxyribonucleotide
Molecule:DNA (5'-D(*TP*GP*CP*AP*TP*TP*TP*CP*CP*CP*GP*TP*AP*AP*AP*TP*CP*T)-3')
Chain IDs:D
Chain Length:18
Number of Molecules:1
Biological Source:Murine adenovirus 1
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
ALY A LYS modified residue
PTR A TYR modified residue
Primary Citation
Unexpected implications of STAT3 acetylation revealed by genetic encoding of acetyl-lysine.
Biochim Biophys Acta Gen Subj 1863 1343 1350 (2019)
PMID: 31170499 DOI: 10.1016/j.bbagen.2019.05.019

Abstact

The signal transducer and activator of transcription 3 (STAT3) protein is activated by phosphorylation of a specific tyrosine residue (Tyr705) in response to various extracellular signals. STAT3 activity was also found to be regulated by acetylation of Lys685. However, the molecular mechanism by which Lys685 acetylation affects the transcriptional activity of STAT3 remains elusive. By genetically encoding the co-translational incorporation of acetyl-lysine into position Lys685 and co-expression of STAT3 with the Elk receptor tyrosine kinase, we were able to characterize site-specifically acetylated, and simultaneously acetylated and phosphorylated STAT3. We measured the effect of acetylation on the crystal structure, and DNA binding affinity and specificity of Tyr705-phosphorylated and non-phosphorylated STAT3. In addition, we monitored the deacetylation of acetylated Lys685 by reconstituting the mammalian enzymatic deacetylation reaction in live bacteria. Surprisingly, we found that acetylation, per se, had no effect on the crystal structure, and DNA binding affinity or specificity of STAT3, implying that the previously observed acetylation-dependent transcriptional activity of STAT3 involves an additional cellular component. In addition, we discovered that Tyr705-phosphorylation protects Lys685 from deacetylation in bacteria, providing a new possible explanation for the observed correlation between STAT3 activity and Lys685 acetylation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures