6PNX image
Entry Detail
PDB ID:
6PNX
Keywords:
Title:
Crystal Structure of an Asymmetric Dimer of FGF Receptor 3 Kinases Trapped in A-loop Tyrosine Transphosphorylation Reaction
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2019-07-03
Release Date:
2020-01-22
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Fibroblast growth factor receptor 3
Mutations:C482A, C582S, R669E
Chain IDs:A, B
Chain Length:324
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Molecular basis for receptor tyrosine kinase A-loop tyrosine transphosphorylation.
Nat.Chem.Biol. 16 267 277 (2020)
PMID: 31959966 DOI: 10.1038/s41589-019-0455-7

Abstact

A long-standing mystery shrouds the mechanism by which catalytically repressed receptor tyrosine kinase domains accomplish transphosphorylation of activation loop (A-loop) tyrosines. Here we show that this reaction proceeds via an asymmetric complex that is thermodynamically disadvantaged because of an electrostatic repulsion between enzyme and substrate kinases. Under physiological conditions, the energetic gain resulting from ligand-induced dimerization of extracellular domains overcomes this opposing clash, stabilizing the A-loop-transphosphorylating dimer. A unique pathogenic fibroblast growth factor receptor gain-of-function mutation promotes formation of the complex responsible for phosphorylation of A-loop tyrosines by eliminating this repulsive force. We show that asymmetric complex formation induces a more phosphorylatable A-loop conformation in the substrate kinase, which in turn promotes the active state of the enzyme kinase. This explains how quantitative differences in the stability of ligand-induced extracellular dimerization promotes formation of the intracellular A-loop-transphosphorylating asymmetric complex to varying extents, thereby modulating intracellular kinase activity and signaling intensity.

Legend

Protein

Chemical

Disease

Primary Citation of related structures