6P8K image
Entry Detail
PDB ID:
6P8K
Title:
Escherichia coli Bacterioferritin Substituted with Zinc Protoporphyrin IX
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2019-06-07
Release Date:
2020-05-13
Method Details:
Experimental Method:
Resolution:
1.70 Å
R-Value Free:
0.21
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 42 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Bacterioferritin
Chain IDs:A, B, C, D, E, F, G, H, I, J, K, L
Chain Length:158
Number of Molecules:12
Biological Source:Escherichia coli K-12
Primary Citation
Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction.
Biochemistry 59 1618 1629 (2020)
PMID: 32283930 DOI: 10.1021/acs.biochem.9b01103

Abstact

The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.

Legend

Protein

Chemical

Disease

Primary Citation of related structures