6OFY image
Deposition Date 2019-04-01
Release Date 2020-02-05
Last Version Date 2024-11-20
Entry Detail
PDB ID:
6OFY
Keywords:
Title:
Crystal Structure of Arachidonic Acid bound to V349I murine COX-2
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.20
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Prostaglandin G/H synthase 2
Gene (Uniprot):Ptgs2
Mutations:V350I
Chain IDs:A, B
Chain Length:552
Number of Molecules:2
Biological Source:Mus musculus
Primary Citation
Arg-513 and Leu-531 Are Key Residues Governing Time-Dependent Inhibition of Cyclooxygenase-2 by Aspirin and Celebrex.
Biochemistry 58 3990 4002 (2019)
PMID: 31469551 DOI: 10.1021/acs.biochem.9b00659

Abstact

Aspirin and Celebrex are well-known time-dependent inhibitors of the cyclooxygenases (COX). Molecular dynamics simulations suggest that Arg-513 and Leu-531 contribute to the structural mechanisms of COX inhibition. We used mutagenesis and functional analyses to characterize how substitutions at these positions influence time-dependent inhibition by aspirin and Celebrex. We show that substitutions of Leu-531 with asparagine and phenylalanine significantly attenuate time-dependent inhibition of COX-2 by these drugs. The introduction of side chain bulk, rigidity, and charge would disrupt the formation of the initial noncovalent complex, in the case of aspirin, and the "high-affinity" binding state, in the case of Celebrex. Substitution of Arg-513 with histidine (the equivalent residue in COX-1) resulted in a 2-fold potentiation of aspirin inhibition, in support of the hypothesis that the presence of histidine in COX-1 lowers the activation barrier associated with the formation of the initial noncovalent enzyme-inhibitor complex. As a corollary, we previously hypothesized that the flexibility associated with Leu-531 contributes to the binding of arachidonic acid (AA) to acetylated COX-2 to generate 15R-hydroxyeicosatetraenoic acid (15R-HETE). We determined the X-ray crystal structure of AA bound to Co3+-protoporphyrin IX-reconstituted V349I murine COX-2 (muCOX-2). V349I muCOX-2 was utilized as a surrogate to trap AA in a conformation leading to 15R-HETE. AA binds in a C-shaped pose, facilitated by the rotation of the Leu-531 side chain. Ile-349 is positioned to sterically shield antarafacial oxygen addition at carbon-15 in a manner similar to that proposed for the acetylated Ser-530 side chain.

Legend

Protein

Chemical

Disease

Primary Citation of related structures