6NZJ image
Deposition Date 2019-02-13
Release Date 2019-06-26
Last Version Date 2023-10-11
Entry Detail
PDB ID:
6NZJ
Keywords:
Title:
Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO2 Capture by a Surface-Exposed [Fe4S4] Cluster
Biological Source:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.21
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 65 2 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Nitrogenase iron protein
Gene (Uniprot):nifH
Chain IDs:A, B
Chain Length:273
Number of Molecules:2
Biological Source:Methanosarcina acetivorans (strain ATCC 35395 / DSM 2834 / JCM 12185 / C2A)
Primary Citation
Structural Analysis of a Nitrogenase Iron Protein from Methanosarcina acetivorans: Implications for CO 2 Capture by a Surface-Exposed [Fe 4 S 4 ] Cluster.
Mbio 10 ? ? (2019)
PMID: 31289188 DOI: 10.1128/mBio.01497-19

Abstact

Nitrogenase iron (Fe) proteins reduce CO2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans (MaNifH), which is generated in the presence of a reductant, dithionite, and an alternative CO2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO2 is possibly captured in an unactivated, linear conformation near the [Fe4S4] cluster of MaNifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO2 on MaNifH while suggesting a possible role of Arg in the initial coordination of CO2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO2 activation by a surface-exposed [Fe4S4] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO2 into valuable chemical commodities.IMPORTANCE This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO2 capture by a surface-exposed [Fe4S4] cluster point to the possibility of developing novel strategies for CO2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO2 activation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures