6N47 image
Deposition Date 2018-11-17
Release Date 2019-11-13
Last Version Date 2024-03-13
Entry Detail
PDB ID:
6N47
Title:
The structure of SB-2-204-tubulin complex
Biological Source:
Source Organism:
Sus scrofa (Taxon ID: 9823)
Bos taurus (Taxon ID: 9913)
Rattus norvegicus (Taxon ID: 10116)
Gallus gallus (Taxon ID: 9031)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.60 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Tubulin alpha-1B chain
Gene (Uniprot):TUBA1B
Chain IDs:A, C
Chain Length:450
Number of Molecules:2
Biological Source:Sus scrofa
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Tubulin beta-2B chain
Gene (Uniprot):TUBB2B
Chain IDs:B, D
Chain Length:445
Number of Molecules:2
Biological Source:Bos taurus
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Stathmin-4
Gene (Uniprot):Stmn4
Chain IDs:E
Chain Length:143
Number of Molecules:1
Biological Source:Rattus norvegicus
Polymer Type:polypeptide(L)
Molecule:Uncharacterized protein
Chain IDs:F
Chain Length:384
Number of Molecules:1
Biological Source:Gallus gallus
Primary Citation
X-ray Crystal Structure Guided Discovery and Antitumor Efficacy of Dihydroquinoxalinone as Potent Tubulin Polymerization Inhibitors.
Acs Chem.Biol. 14 2810 2821 (2019)
PMID: 31714738 DOI: 10.1021/acschembio.9b00696

Abstact

Because of its multifaceted role in cellular functions, tubulin is a validated and productive drug target for cancer therapy. While many tubulin inhibitors demonstrate clinical efficacy, they are often limited by the development of multidrug resistance. Therefore, implementation of tubulin inhibitors that can overcome resistance could provide significant therapeutic benefits. To optimize our previously reported tubulin inhibitor, 4a, we designed and synthesized two new analogues, SB202 and SB204, based on the crystal structure of 4a in complex with tubulin protein. SB202 and SB204 achieved enhanced binding at the colchicine site in tubulin and also showed improved metabolic stability and antiproliferative potency in vitro. Functional studies confirmed that SB202 and SB204 inhibit tubulin polymerization, arrest cells in the G2/M phase of the cell cycle, interfere with cancer cell migration and proliferation, and enhance apoptotic cascades. When evaluated in vivo, SB202 exhibited antitumor and vascular disrupting action against paclitaxel-resistant mouse xenograft models, strongly suggesting the potential of this scaffold to overcome multidrug resistance for cancer therapy.

Legend

Protein

Chemical

Disease

Primary Citation of related structures