6MJP image
Deposition Date 2018-09-21
Release Date 2019-03-27
Last Version Date 2023-10-11
Entry Detail
PDB ID:
6MJP
Keywords:
Title:
LptB(E163Q)FGC from Vibrio cholerae
Biological Source:
Source Organism:
Vibrio cholerae (Taxon ID: 666)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.85 Å
R-Value Free:
0.29
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:ABC transporter ATP-binding protein
Gene (Uniprot):lptB
Mutations:E163Q
Chain IDs:A, B
Chain Length:241
Number of Molecules:2
Biological Source:Vibrio cholerae
Polymer Type:polypeptide(L)
Molecule:Lipopolysaccharide export system protein LptC
Chain IDs:C
Chain Length:191
Number of Molecules:1
Biological Source:Vibrio cholerae
Polymer Type:polypeptide(L)
Molecule:FIG000988: Predicted permease
Chain IDs:D (auth: F)
Chain Length:366
Number of Molecules:1
Biological Source:Vibrio cholerae
Polymer Type:polypeptide(L)
Molecule:LPS export ABC transporter permease LptG
Chain IDs:E (auth: G)
Chain Length:356
Number of Molecules:1
Biological Source:Vibrio cholerae
Primary Citation
Structural basis of unidirectional export of lipopolysaccharide to the cell surface.
Nature 567 550 553 (2019)
PMID: 30894747 DOI: 10.1038/s41586-019-1039-0

Abstact

Gram-negative bacteria are surrounded by an inner cytoplasmic membrane and by an outer membrane, which serves as a protective barrier to limit entry of many antibiotics. The distinctive properties of the outer membrane are due to the presence of lipopolysaccharide1. This large glycolipid, which contains numerous sugars, is made in the cytoplasm; a complex of proteins forms a membrane-to-membrane bridge that mediates transport of lipopolysaccharide from the inner membrane to the cell surface1. The inner-membrane components of the protein bridge comprise an ATP-binding cassette transporter that powers transport, but how this transporter ensures unidirectional lipopolysaccharide movement across the bridge to the outer membrane is unknown2. Here we describe two crystal structures of a five-component inner-membrane complex that contains all the proteins required to extract lipopolysaccharide from the membrane and pass it to the protein bridge. Analysis of these structures, combined with biochemical and genetic experiments, identifies the path of lipopolysaccharide entry into the cavity of the transporter and up to the bridge. We also identify a protein gate that must open to allow movement of substrate from the cavity onto the bridge. Lipopolysaccharide entry into the cavity is ATP-independent, but ATP is required for lipopolysaccharide movement past the gate and onto the bridge. Our findings explain how the inner-membrane transport complex controls efficient unidirectional transport of lipopolysaccharide against its concentration gradient.

Legend

Protein

Chemical

Disease

Primary Citation of related structures