6LR9 image
Entry Detail
PDB ID:
6LR9
Keywords:
Title:
HSP90 in complex with Debio0932
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2020-01-15
Release Date:
2021-01-13
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.20
R-Value Work:
0.16
R-Value Observed:
0.17
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Heat shock protein HSP 90-alpha
Chain IDs:A
Chain Length:252
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Complex crystal structure determination and anti-non-small-cell lung cancer activity of the Hsp90 N inhibitor Debio0932.
Acta Crystallogr D Struct Biol 77 86 97 (2021)
PMID: 33404528 DOI: 10.1107/S2059798320014990

Abstact

Debio0932 is a promising lead compound in phase I clinical trials targeting the N-terminal ATP-binding pocket of the molecular chaperone heat-shock protein 90 (Hsp90N). The absence of a crystal structure of the Hsp90N-Debio0932 complex, however, has impeded further structural optimization of Debio0932 and understanding of the molecular-interaction mechanism. Here, a high-resolution crystal structure of the Hsp90N-Debio0932 complex was successfully determined (resolution limit 2.20 Å; PDB entry 6lr9) by X-ray diffraction and the molecular-interaction mechanism was analysed in detail, which suggested that Debio0932 suppresses cancer cells by accommodating itself in the ATP-binding pocket of Hsp90N, disabling its molecular-chaperone capability. The results of a thermal shift assay (ΔTm = 8.83 ± 0.90°C) and isothermal titration calorimetry (Kd = 15.50 ± 1.30 nM) indicated strong binding and favourable thermodynamic changes in the binding of Hsp90N and Debio0932. Based on the crystal structure of the complex and on molecular-interaction analysis, 30 new Debio0932 derivatives were designed and nine new derivatives exhibited increased binding to Hsp90N, as determined by molecular-docking evaluation. Additionally, Debio0932 suppressed cell proliferation (IC50 values of 3.26 ± 2.82 µM for A549, 20.33 ± 5.39 µM for H1299 and 3.16 ± 1.04 µM for H1975), induced cell-cycle arrest and promoted apoptosis in three non-small-cell lung cancer (NSCLC) cell lines. These results provide novel perspectives and guidance for the development of new anti-NSCLC drugs based on the lead compound Debio0932.

Legend

Protein

Chemical

Disease

Primary Citation of related structures