6KW1 image
Deposition Date 2019-09-05
Release Date 2020-09-09
Last Version Date 2023-11-22
Entry Detail
PDB ID:
6KW1
Keywords:
Title:
The structure of the metallo-beta-lactamase VIM-2 in complex with a triazolylthioacetamide 1b
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
1.78 Å
R-Value Free:
0.20
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Beta-lactamase class B VIM-2
Gene (Uniprot):blaVIM-2
Chain IDs:A, B
Chain Length:266
Number of Molecules:2
Biological Source:Pseudomonas aeruginosa
Primary Citation
Kinetic, Thermodynamic, and Crystallographic Studies of 2-Triazolylthioacetamides as Verona Integron-Encoded Metallo-beta-Lactamase 2 (VIM-2) Inhibitor.
Biomolecules 10 ? ? (2020)
PMID: 31906402 DOI: 10.3390/biom10010072

Abstact

Inhibition of β-lactamases presents a promising strategy to restore the β-lactams antibacterial activity to resistant bacteria. In this work, we found that aromatic carboxyl substituted 2-triazolylthioacetamides 1a-j inhibited VIM-2, exhibiting an IC50 value in the range of 20.6-58.6 μM. The structure-activity relationship study revealed that replacing the aliphatic carboxylic acid with aromatic carboxyl improved the inhibitory activity of 2-triazolylthioacetamides against VIM-2. 1a-j (16 mg/mL) restored the antibacterial activity of cefazolin against E. coli cell expressing VIM-2, resulting in a 4-8-fold reduction in MICs. The isothermal titration calorimetry (ITC) characterization suggested that the primary binding 2-triazolylthioacetamide (1b, 1c, or 1h) to VIM-2 was a combination of entropy and enthalpy contributions. Further, the crystal structure of VIM-2 in complex with 1b was obtained by co-crystallization with a hanging-drop vapour-diffusion method. The crystal structure analysis revealed that 1b bound to two Zn(II) ions of the enzyme active sites, formed H-bound with Asn233 and structure water molecule, and interacted with the hydrophobic pocket of enzyme activity center utilizing hydrophobic moieties; especially for the phenyl of aromatic carboxyl which formed π-π stacking with active residue His263. These studies confirmed that aromatic carboxyl substituted 2-triazolylthioacetamides are the potent VIM-2 inhibitors scaffold and provided help to further optimize 2-triazolylthioacetamides as VIM-2 even or broad-spectrum MβLs inhibitors.

Legend

Protein

Chemical

Disease

Primary Citation of related structures