6K13 image
Deposition Date 2019-05-09
Release Date 2019-10-16
Last Version Date 2023-11-22
Entry Detail
PDB ID:
6K13
Keywords:
Title:
Crystal Structure Basis for BmLDH Complex
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.89 Å
R-Value Free:
0.21
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 21 2 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:L-lactate dehydrogenase
Gene (Uniprot):BMR1_01G00020
Chain IDs:A, B
Chain Length:333
Number of Molecules:2
Biological Source:Babesia microti (strain RI)
Primary Citation
Crystal structures ofBabesia microtilactate dehydrogenase BmLDH reveal a critical role for Arg99 in catalysis.
Faseb J. 33 13669 13682 (2019)
PMID: 31585506 DOI: 10.1096/fj.201901259R

Abstact

The tick- and transfusion-transmitted human pathogen Babesia microti infects host erythrocytes to cause the pathologic symptoms associated with human babesiosis, an emerging disease with worldwide distribution and potentially fatal clinical outcome. Drugs currently recommended for the treatment of babesiosis are associated with a high failure rate and significant adverse events, highlighting the urgent need for more-effective and safer babesiosis therapies. Unlike other apicomplexan parasites, B. microti lacks a canonical lactate dehydrogenase (LDH) but instead expresses a unique enzyme, B. microti LDH (BmLDH), acquired through evolution by horizontal transfer from a mammalian host. Here, we report the crystal structures of BmLDH in apo state and ternary complex (enzyme-NADH-oxamate) solved at 2.79 and 1.89 Å. Analysis of these structures reveals that upon binding to the coenzyme and substrate, the active pocket of BmLDH undergoes a major conformational change from an opened and disordered to a closed and stabilized state. Biochemical assays using wild-type and mutant B. microti and human LDHs identified Arg99 as a critical residue for the catalytic activity of BmLDH but not its human counterpart. Interestingly, mutation of Arg99 to Ala had no impact on the overall structure and affinity of BmLDH to NADH but dramatically altered the closure of the enzyme's active pocket. Together, these structural and biochemical data highlight significant differences between B. microti and human LDH enzymes and suggest that BmLDH could be a suitable target for the development of selective antibabesial inhibitors.-Yu, L., Shen, Z., Liu, Q., Zhan, X., Luo, X., An, X., Sun, Y., Li, M., Wang, S., Nie, Z., Ao, Y., Zhao, Y., Peng, G., Ben Mamoun, C., He, L., Zhao, J. Crystal structures of Babesia microti lactate dehydrogenase BmLDH reveal a critical role for Arg99 in catalysis.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback