6JUW image
Deposition Date 2019-04-15
Release Date 2020-03-25
Last Version Date 2023-11-22
Entry Detail
PDB ID:
6JUW
Keywords:
Title:
BOVINE HEART CYTOCHROME C OXIDASE IN CATALITIC INTERMEDIATES AT 1.80 ANGSTROM RESOLUTION
Biological Source:
Source Organism:
Bos taurus (Taxon ID: 9913)
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.18
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 1
Gene (Uniprot):MT-CO1
Chain IDs:A, N
Chain Length:514
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 2
Gene (Uniprot):MT-CO2
Chain IDs:B, O
Chain Length:227
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 3
Gene (Uniprot):MT-CO3
Chain IDs:C, P
Chain Length:259
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 4 isoform 1, mitochondrial
Gene (Uniprot):COX4I1
Chain IDs:D, Q
Chain Length:144
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 5A, mitochondrial
Gene (Uniprot):COX5A
Chain IDs:E, R
Chain Length:105
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 5B
Gene (Uniprot):COX5B
Chain IDs:F, S
Chain Length:98
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 6A2, mitochondrial
Gene (Uniprot):COX6A2
Chain IDs:G, T
Chain Length:84
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 6B1
Gene (Uniprot):COX6B1
Chain IDs:H, U
Chain Length:79
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 6C
Gene (Uniprot):COX6C
Chain IDs:I, V
Chain Length:73
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 7A1, mitochondrial
Gene (Uniprot):COX7A1
Chain IDs:J, W
Chain Length:58
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 7B, mitochondrial
Gene (Uniprot):COX7B
Chain IDs:K, X
Chain Length:49
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 7C, mitochondrial
Gene (Uniprot):COX7C
Chain IDs:L, Y
Chain Length:46
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 8B, mitochondrial
Gene (Uniprot):COX8B
Chain IDs:M, Z
Chain Length:43
Number of Molecules:2
Biological Source:Bos taurus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
FME A MET modified residue
SAC I SER modified residue
TPO G THR modified residue
Primary Citation
X-ray structures of catalytic intermediates of cytochromecoxidase provide insights into its O2activation and unidirectional proton-pump mechanisms.
J.Biol.Chem. 295 5818 5833 (2020)
PMID: 32165497 DOI: 10.1074/jbc.RA119.009596

Abstact

Cytochrome c oxidase (CcO) reduces O2 to water, coupled with a proton-pumping process. The structure of the O2-reduction site of CcO contains two reducing equivalents, Fe a32+ and CuB1+, and suggests that a peroxide-bound state (Fe a33+-O--O--CuB2+) rather than an O2-bound state (Fe a32+-O2) is the initial catalytic intermediate. Unexpectedly, however, resonance Raman spectroscopy results have shown that the initial intermediate is Fe a32+-O2, whereas Fe a33+-O--O--CuB2+ is undetectable. Based on X-ray structures of static noncatalytic CcO forms and mutation analyses for bovine CcO, a proton-pumping mechanism has been proposed. It involves a proton-conducting pathway (the H-pathway) comprising a tandem hydrogen-bond network and a water channel located between the N- and P-side surfaces. However, a system for unidirectional proton-transport has not been experimentally identified. Here, an essentially identical X-ray structure for the two catalytic intermediates (P and F) of bovine CcO was determined at 1.8 Å resolution. A 1.70 Å Fe-O distance of the ferryl center could best be described as Fe a34+ = O2-, not as Fe a34+-OH- The distance suggests an ∼800-cm-1 Raman stretching band. We found an interstitial water molecule that could trigger a rapid proton-coupled electron transfer from tyrosine-OH to the slowly forming Fe a33+-O--O--CuB2+ state, preventing its detection, consistent with the unexpected Raman results. The H-pathway structures of both intermediates indicated that during proton-pumping from the hydrogen-bond network to the P-side, a transmembrane helix closes the water channel connecting the N-side with the hydrogen-bond network, facilitating unidirectional proton-pumping during the P-to-F transition.

Legend

Protein

Chemical

Disease

Primary Citation of related structures