6JHT image
Entry Detail
PDB ID:
6JHT
EMDB ID:
Keywords:
Title:
The cryo-EM structure of HAV bound to a neutralizing antibody-F9
Biological Source:
PDB Version:
Deposition Date:
2019-02-19
Release Date:
2020-03-18
Method Details:
Experimental Method:
Resolution:
3.79 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:VP1
Chain IDs:A
Chain Length:278
Number of Molecules:1
Biological Source:Human hepatitis A virus Hu/Australia/HM175/1976
Polymer Type:polypeptide(L)
Description:VP2
Chain IDs:B
Chain Length:222
Number of Molecules:1
Biological Source:Human hepatitis A virus Hu/Australia/HM175/1976
Polymer Type:polypeptide(L)
Description:VP3
Chain IDs:C
Chain Length:246
Number of Molecules:1
Biological Source:Human hepatitis A virus Hu/Australia/HM175/1976
Polymer Type:polypeptide(L)
Description:FAB Light Chain
Chain IDs:D
Chain Length:213
Number of Molecules:1
Biological Source:Human hepatitis A virus Hu/Australia/HM175/1976
Polymer Type:polypeptide(L)
Description:FAB Heavy Chain
Chain IDs:E
Chain Length:221
Number of Molecules:1
Biological Source:Human hepatitis A virus Hu/Australia/HM175/1976
Ligand Molecules
Primary Citation
Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors.
Plos Biol. 17 e3000229 e3000229 (2019)
PMID: 31039149 DOI: 10.1371/journal.pbio.3000229

Abstact

Hepatitis A virus (HAV), an enigmatic and ancient pathogen, is a major causative agent of acute viral hepatitis worldwide. Although there are effective vaccines, antivirals against HAV infection are still required, especially during fulminant hepatitis outbreaks. A more in-depth understanding of the antigenic characteristics of HAV and the mechanisms of neutralization could aid in the development of rationally designed antiviral drugs targeting HAV. In this paper, 4 new antibodies-F4, F6, F7, and F9-are reported that potently neutralize HAV at 50% neutralizing concentration values (neut50) ranging from 0.1 nM to 0.85 nM. High-resolution cryo-electron microscopy (cryo-EM) structures of HAV bound to F4, F6, F7, and F9, together with results of our previous studies on R10 fragment of antigen binding (Fab)-HAV complex, shed light on the locations and nature of the epitopes recognized by the 5 neutralizing monoclonal antibodies (NAbs). All the epitopes locate within the same patch and are highly conserved. The key structure-activity correlates based on the antigenic sites have been established. Based on the structural data of the single conserved antigenic site and key structure-activity correlates, one promising drug candidate named golvatinib was identified by in silico docking studies. Cell-based antiviral assays confirmed that golvatinib is capable of blocking HAV infection effectively with a 50% inhibitory concentration (IC50) of approximately 1 μM. These results suggest that the single conserved antigenic site from complete HAV capsid is a good antiviral target and that golvatinib could function as a lead compound for anti-HAV drug development.

Legend

Protein

Chemical

Disease

Primary Citation of related structures