6IX4 image
Entry Detail
PDB ID:
6IX4
Keywords:
Title:
Structure of an epoxide hydrolase from Aspergillus usamii E001 (AuEH2) at 1.51 Angstroms resolution
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2018-12-09
Release Date:
2019-12-11
Method Details:
Experimental Method:
Resolution:
1.51 Å
R-Value Free:
0.16
R-Value Work:
0.14
R-Value Observed:
0.14
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Microsomal epoxide hydrolase
Chain IDs:A, B
Chain Length:397
Number of Molecules:2
Biological Source:Aspergillus usamii
Primary Citation
Nearly perfect kinetic resolution of racemic o-nitrostyrene oxide by AuEH2, a microsomal epoxide hydrolase from Aspergillus usamii, with high enantio- and regio-selectivity.
Int.J.Biol.Macromol. 169 1 7 (2021)
PMID: 33316339 DOI: 10.1016/j.ijbiomac.2020.12.074

Abstact

Only a few known epoxide hydrolases (EHs) displayed activity towards o-nitrostyrene oxide (4a), presumably owing to the large steric hindrance caused by o-nitro substituent. Therefore, excavating EHs with high activity and enantio- and/or regio-selectivity towards racemic (rac-) 4a is essential but challenging. Here, AuEH2 from Aspergillus usamii was expressed in E. coli BL21(DE3). E. coli/Aueh2, an E. coli transformant expressing AuEH2, possessed EH activities of 16.2-184 U/g wet cell towards rac-styrene oxide (1a) and its derivatives (2a-13a), and the largest enantiomeric ratio of 96 towards rac-4a. The regioselectivity coefficients, βR and βS, of AuEH2 were determined to be 99.2% and 98.9%, suggesting that it regiopreferentially attacks the Cβ in the oxirane rings of (R)- and (S)-4a. Then, the nearly perfect kinetic resolution of 20 mM rac-4a in pure water was carried out using 20 mg/mL wet cells of E. coli/Aueh2 at 25 °C for 50 min, retaining (S)-4a with over 99% ees and 48.9% yields, while producing (R)-o-nitrophenyl-1,2-ethanediol (4b) with 95.3% eep and 49.8% yieldp. To elucidate the molecular mechanism of AuEH2 with high enantiopreference for (R)-4a, its crystal structure was solved by X-ray diffraction and the molecular docking of AuEH2 with (R)- or (S)-4a was simulated.

Legend

Protein

Chemical

Disease

Primary Citation of related structures