6I1J image
Deposition Date 2018-10-28
Release Date 2019-09-04
Last Version Date 2024-05-15
Entry Detail
PDB ID:
6I1J
Keywords:
Title:
Selective formation of trinuclear transition metal centers in a trimeric helical peptide
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.35 Å
R-Value Free:
0.28
R-Value Work:
0.26
R-Value Observed:
0.26
Space Group:
P 63 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:A helical peptide containing a trinuclear Cu(II) center: HisAD
Chain IDs:A
Chain Length:32
Number of Molecules:1
Biological Source:synthetic construct
Ligand Molecules
Primary Citation
Selective coordination of three transition metal ions within a coiled-coil peptide scaffold.
Chem Sci 10 7456 7465 (2019)
PMID: 31489168 DOI: 10.1039/c9sc01165j

Abstact

Designing peptides that fold and assemble in response to metal ions tests our understanding of how peptide folding and metal binding influence one another. Here, histidine residues are introduced into the hydrophobic core of a coiled-coil trimer, generating a peptide that self-assembles upon the addition of metal ions. HisAD, the resulting peptide, is unstructured in the absence of metal and folds selectively to form an α-helical construct upon complexation with Cu(ii) and Ni(ii) but not Co(ii) or Zn(ii). The structure, and metal-binding ability, of HisAD is probed using a combination of circular dichroism (CD) spectroscopy, analytical ultracentrifugation (AUC), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. These show the peptide is trimeric and binds to both Cu(ii) and Ni(ii) in a 1 : 1 ratio with the histidine residues involved in the metal coordination, as designed. The X-ray crystal structure of the HisAD-Cu(ii) complex reveals the trimeric HisAD peptide coordinates three Cu(ii) ions; this is the first example of such a structure. Additionally, HisAD demonstrates an unprecedented discrimination between transition metal ions, the basis of which is likely to be related to the stability of the peptide-metal complexes formed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures