6H86 image
Deposition Date 2018-08-02
Release Date 2019-05-08
Last Version Date 2024-05-15
Entry Detail
PDB ID:
6H86
Title:
Rebuilt and re-refined PDB entry 4R3Q: Crystal structure of SYCE3
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.21
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
H 3
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Synaptonemal complex central element protein 3
Gene (Uniprot):Syce3
Chain IDs:A, B
Chain Length:88
Number of Molecules:2
Biological Source:Mus musculus
Primary Citation
A molecular model for self-assembly of the synaptonemal complex protein SYCE3.
J.Biol.Chem. 294 9260 9275 (2019)
PMID: 31023827 DOI: 10.1074/jbc.RA119.008404

Abstact

The synaptonemal complex (SC) is a supramolecular protein assembly that mediates homologous chromosome synapsis during meiosis. This zipper-like structure assembles in a continuous manner between homologous chromosome axes, enforcing a 100-nm separation along their entire length and providing the necessary three-dimensional framework for cross-over formation. The mammalian SC comprises eight components-synaptonemal complex protein 1-3 (SYCP1-3), synaptonemal complex central element protein 1-3 (SYCE1-3), testis-expressed 12 (TEX12), and six6 opposite strand transcript 1 (SIX6OS1)-arranged in transverse and longitudinal structures. These largely α-helical, coiled-coil proteins undergo heterotypic interactions, coupled with recursive self-assembly of SYCP1, SYCE2-TEX12, and SYCP2-SYCP3, to achieve the vast supramolecular SC structure. Here, we report a novel self-assembly mechanism of the SC central element component SYCE3, identified through multi-angle light scattering and small-angle X-ray scattering (SAXS) experiments. These analyses revealed that SYCE3 adopts a dimeric four-helical bundle structure that acts as the building block for concentration-dependent self-assembly into a series of discrete higher-order oligomers. We observed that this is achieved through staggered lateral interactions between self-assembly surfaces of SYCE3 dimers and through end-on interactions that likely occur through intermolecular domain swapping between dimer folds. These mechanisms are combined to achieve potentially limitless SYCE3 assembly, particularly favoring formation of dodecamers of three laterally associated end-on tetramers. Our findings extend the family of self-assembling proteins within the SC and reveal additional means for structural stabilization of the SC central element.

Legend

Protein

Chemical

Disease

Primary Citation of related structures