6GGG image
Deposition Date 2018-05-03
Release Date 2019-01-09
Last Version Date 2024-01-17
Entry Detail
PDB ID:
6GGG
Keywords:
Title:
Mineralocorticoid receptor in complex with (s)-13
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
1.71 Å
R-Value Free:
0.19
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 41 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Mineralocorticoid receptor
Gene (Uniprot):NR3C2
Chain IDs:A
Chain Length:305
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:NCOA1 peptide
Chain IDs:B
Chain Length:15
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation

Abstact

The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators (S)-1 and (S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na+/K+ ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of (S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na+/K+ ratio in vivo.

Legend

Protein

Chemical

Disease

Primary Citation of related structures