6GFO image
Entry Detail
PDB ID:
6GFO
Keywords:
Title:
cyanobacterial GAPDH with full-length CP12
Biological Source:
PDB Version:
Deposition Date:
2018-05-01
Release Date:
2019-05-08
Method Details:
Experimental Method:
Resolution:
2.10 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 21 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Glyceraldehyde-3-phosphate dehydrogenase
Chain IDs:A, B, C, D
Chain Length:339
Number of Molecules:4
Biological Source:Thermosynechococcus elongatus (strain BP-1)
Polymer Type:polypeptide(L)
Description:CP12 polypeptide
Chain IDs:E, F
Chain Length:77
Number of Molecules:2
Biological Source:Thermosynechococcus elongatus (strain BP-1)
Primary Citation
Structural basis of light-induced redox regulation in the Calvin-Benson cycle in cyanobacteria.
Proc.Natl.Acad.Sci.USA 116 20984 20990 (2019)
PMID: 31570616 DOI: 10.1073/pnas.1906722116

Abstact

Plants, algae, and cyanobacteria fix carbon dioxide to organic carbon with the Calvin-Benson (CB) cycle. Phosphoribulokinase (PRK) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) are essential CB-cycle enzymes that control substrate availability for the carboxylation enzyme Rubisco. PRK consumes ATP to produce the Rubisco substrate ribulose bisphosphate (RuBP). GAPDH catalyzes the reduction step of the CB cycle with NADPH to produce the sugar glyceraldehyde 3-phosphate (GAP), which is used for regeneration of RuBP and is the main exit point of the cycle. GAPDH and PRK are coregulated by the redox state of a conditionally disordered protein CP12, which forms a ternary complex with both enzymes. However, the structural basis of CB-cycle regulation by CP12 is unknown. Here, we show how CP12 modulates the activity of both GAPDH and PRK. Using thermophilic cyanobacterial homologs, we solve crystal structures of GAPDH with different cofactors and CP12 bound, and the ternary GAPDH-CP12-PRK complex by electron cryo-microscopy, we reveal that formation of the N-terminal disulfide preorders CP12 prior to binding the PRK active site, which is resolved in complex with CP12. We find that CP12 binding to GAPDH influences substrate accessibility of all GAPDH active sites in the binary and ternary inhibited complexes. Our structural and biochemical data explain how CP12 integrates responses from both redox state and nicotinamide dinucleotide availability to regulate carbon fixation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures