6DUK image
Deposition Date 2018-06-21
Release Date 2019-06-05
Last Version Date 2023-10-11
Entry Detail
PDB ID:
6DUK
Title:
EGFR with an allosteric inhibitor
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Epidermal growth factor receptor
Gene (Uniprot):EGFR
Mutagens:T790M, V948R
Chain IDs:A, B, C, D, E, F
Chain Length:331
Number of Molecules:6
Biological Source:Homo sapiens
Primary Citation
Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor.
Cancer Discov 9 926 943 (2019)
PMID: 31092401 DOI: 10.1158/2159-8290.CD-18-0903

Abstact

Allosteric kinase inhibitors offer a potentially complementary therapeutic strategy to ATP-competitive kinase inhibitors due to their distinct sites of target binding. In this study, we identify and study a mutant-selective EGFR allosteric inhibitor, JBJ-04-125-02, which as a single agent can inhibit cell proliferation and EGFRL858R/T790M/C797S signaling in vitro and in vivo. However, increased EGFR dimer formation limits treatment efficacy and leads to drug resistance. Remarkably, osimertinib, an ATP-competitive covalent EGFR inhibitor, uniquely and significantly enhances the binding of JBJ-04-125-02 for mutant EGFR. The combination of osimertinib and JBJ-04-125-02 results in an increase in apoptosis, a more effective inhibition of cellular growth, and an increased efficacy in vitro and in vivo compared with either single agent alone. Collectively, our findings suggest that the combination of a covalent mutant-selective ATP-competitive inhibitor and an allosteric EGFR inhibitor may be an effective therapeutic approach for patients with EGFR-mutant lung cancer. SIGNIFICANCE: The clinical efficacy of EGFR tyrosine kinase inhibitors (TKI) in EGFR-mutant lung cancer is limited by acquired drug resistance, thus highlighting the need for alternative strategies to inhibit EGFR. Here, we identify a mutant EGFR allosteric inhibitor that is effective as a single agent and in combination with the EGFR TKI osimertinib.This article is highlighted in the In This Issue feature, p. 813.

Legend

Protein

Chemical

Disease

Primary Citation of related structures