6CDY image
Deposition Date 2018-02-09
Release Date 2020-07-01
Last Version Date 2023-10-04
Entry Detail
PDB ID:
6CDY
Title:
Crystal structure of TEAD complexed with its inhibitor
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.32 Å
R-Value Free:
0.25
R-Value Work:
0.19
R-Value Observed:
0.20
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Transcriptional enhancer factor TEF-4
Gene (Uniprot):TEAD2
Chain IDs:A, B
Chain Length:240
Number of Molecules:2
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Lats1/2 Sustain Intestinal Stem Cells and Wnt Activation through TEAD-Dependent and Independent Transcription.
Cell Stem Cell 26 675 692.e8 (2020)
PMID: 32259481 DOI: 10.1016/j.stem.2020.03.002

Abstact

Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback