6C16 image
Entry Detail
PDB ID:
6C16
Keywords:
Title:
Ubiquitin variant (UbV.Fbl10.1) bound to a human Skp1-Fbl11 fragment complex.
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2018-01-04
Release Date:
2018-07-18
Method Details:
Experimental Method:
Resolution:
3.27 Å
R-Value Free:
0.31
R-Value Work:
0.26
R-Value Observed:
0.26
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:S-phase kinase-associated protein 1
Chain IDs:A, B
Chain Length:165
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Description:Lysine-specific demethylase 2A
Chain IDs:C, E (auth: F)
Chain Length:47
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Description:Polyubiquitin-B
Chain IDs:D, F (auth: H)
Chain Length:86
Number of Molecules:2
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
A Structure-Based Strategy for Engineering Selective Ubiquitin Variant Inhibitors of Skp1-Cul1-F-Box Ubiquitin Ligases.
Structure 26 1226 ? (2018)
PMID: 30033217 DOI: 10.1016/j.str.2018.06.004

Abstact

Skp1-Cul1-F-box (SCF) E3 ligases constitute the largest and best-characterized family of the multisubunit E3 ligases with important cellular functions and numerous disease links. The specificity of an SCF E3 ligase is established by one of the 69 human F-box proteins that are recruited to Cul1 through the Skp1 adaptor. We previously reported generation of ubiquitin variants (UbVs) targeting Fbw7 and Fbw11, which inhibit ligase activity by binding at the F-box-Skp1 interface to competitively displace Cul1. In the present study, we employed an optimized engineering strategy to generate specific binding UbVs against 17 additional Skp1-F-box complexes. We validated our design strategy and uncovered the structural basis of binding specificity by crystallographic analyses of representative UbVs bound to Skp1-Fbl10 and Skp1-Fbl11. Our study highlights the power of combining phage display with structure-based design to develop UbVs targeting specific protein surfaces.

Legend

Protein

Chemical

Disease

Primary Citation of related structures