6BNR image
Deposition Date 2017-11-17
Release Date 2018-09-05
Last Version Date 2024-10-23
Entry Detail
PDB ID:
6BNR
Title:
Carbonmonoxy hemoglobin in complex with the antisickling agent 5-methoxy-2-(pyridin-2-ylmethoxy)benzaldehyde (INN310)
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
1.95 Å
R-Value Free:
0.26
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Hemoglobin subunit alpha
Gene (Uniprot):HBA1, HBA2
Chain IDs:A, C
Chain Length:141
Number of Molecules:2
Biological Source:Homo sapiens
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Hemoglobin subunit beta
Gene (Uniprot):HBB
Chain IDs:B, D
Chain Length:146
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Rational design of pyridyl derivatives of vanillin for the treatment of sickle cell disease.
Bioorg. Med. Chem. 26 2530 2538 (2018)
PMID: 29655608 DOI: 10.1016/j.bmc.2018.04.015

Abstact

Hypoxia-induced polymerization of sickle hemoglobin (Hb S) is the principal phenomenon that underlays the pathophysiology and morbidity associated with sickle cell disease (SCD). Opportunely, as an allosteric protein, hemoglobin (Hb) serves as a convenient and potentially critical druggable target. Consequently, molecules that prevent Hb S polymerization (Hb modifiers), and the associated erythrocyte sickling have been investigated-and retain significant interest-as a viable therapeutic strategy for SCD. This group of molecules, including aromatic aldehydes, form high oxygen affinity Schiff-base adducts with Hb S, which are resistant to polymerization. Here, we report the design and synthesis of novel potent antisickling agents (SAJ-009, SAJ-310 and SAJ-270) based on the pharmacophore of vanillin and INN-312, a previously reported pyridyl derivative of vanillin. These novel derivatives exhibited superior in vitro binding and pharmacokinetic properties compared to vanillin, which translated into significantly enhanced allosteric and antisickling properties. Crystal structure studies of liganded Hb in the R2 quaternary state in complex with SAJ-310 provided important insights into the allosteric and antisickling properties of this group of compounds. While these derivatives generally show similar in vitro biological potency, significant structure-dependent differences in their biochemical profiles would help predict the most promising candidates for successful in vivo pre-clinical translational studies and inform further structural modifications to improve on their pharmacologic properties.

Legend

Protein

Chemical

Disease

Primary Citation of related structures