6B5E image
Deposition Date 2017-09-29
Release Date 2018-02-21
Last Version Date 2023-10-04
Entry Detail
PDB ID:
6B5E
Keywords:
Title:
Mycobacterium tuberculosis RmlA in complex with dTDP-glucose
Biological Source:
Method Details:
Experimental Method:
Resolution:
1.85 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Glucose-1-phosphate thymidylyltransferase
Gene (Uniprot):rmlA
Chain IDs:A, B, C, D, E, F, G, H
Chain Length:296
Number of Molecules:8
Biological Source:Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)
Primary Citation
The structure of glucose-1-phosphate thymidylyltransferase from Mycobacterium tuberculosis reveals the location of an essential magnesium ion in the RmlA-type enzymes.
Protein Sci. 27 441 450 (2018)
PMID: 29076563 DOI: 10.1002/pro.3333

Abstact

Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, continues to be a major threat to populations worldwide. Whereas the disease is treatable, the drug regimen is arduous at best with the use of four antimicrobials over a six-month period. There is clearly a pressing need for the development of new therapeutics. One potential target for structure-based drug design is the enzyme RmlA, a glucose-1-phosphate thymidylyltransferase. This enzyme catalyzes the first step in the biosynthesis of l-rhamnose, which is a deoxysugar critical for the integrity of the bacterium's cell wall. Here, we report the X-ray structures of M. tuberculosis RmlA in complex with either dTTP or dTDP-glucose to 1.6 Å and 1.85 Å resolution, respectively. In the RmlA/dTTP complex, two magnesium ions were observed binding to the nucleotide, both ligated in octahedral coordination spheres. In the RmlA/dTDP-glucose complex, only a single magnesium ion was observed. Importantly, for RmlA-type enzymes with known three-dimensional structures, not one model shows the position of the magnesium ion bound to the nucleotide-linked sugar. As such, this investigation represents the first direct observation of the manner in which a magnesium ion is coordinated to the RmlA product and thus has important ramifications for structure-based drug design. In the past, molecular modeling procedures have been employed to derive a three-dimensional model of the M. tuberculosis RmlA for drug design. The X-ray structures presented herein provide a superior molecular scaffold for such endeavors in the treatment of one of the world's deadliest diseases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback