6A8Z image
Entry Detail
PDB ID:
6A8Z
Keywords:
Title:
Crystal structure of M1 zinc metallopeptidase from Deinococcus radiodurans
Biological Source:
PDB Version:
Deposition Date:
2018-07-11
Release Date:
2019-07-17
Method Details:
Experimental Method:
Resolution:
2.05 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Zinc metalloprotease, putative
Chain IDs:A, B
Chain Length:474
Number of Molecules:2
Biological Source:Deinococcus radiodurans (strain ATCC 13939 / DSM 20539 / JCM 16871 / LMG 4051 / NBRC 15346 / NCIMB 9279 / R1 / VKM B-1422)
Primary Citation
Two-domain aminopeptidase of M1 family: Structural features for substrate binding and gating in absence of C-terminal domain.
J.Struct.Biol. 208 51 60 (2019)
PMID: 31351924 DOI: 10.1016/j.jsb.2019.07.010

Abstact

Zinc metallopeptidases of the M1 family (M1 peptidases) with unique metal binding motif HEXXH(X)18E regulate many important biological processes such as tumor growth, angiogenesis, hormone regulation, and immune cell development. Typically, these enzymes exist in three-domain [N-terminal domain (N-domain), catalytic domain, and C-terminal domain (C-domain)] or four-domain (N-domain, catalytic domain, middle domain, and C-domain) format in which N-domain and catalytic domain are more conserved. The C-domain plays important roles in substrate binding and gating. In this study we report the first structure of a two-domain (N-domain and catalytic domain) M1 peptidase at 2.05 Å resolution. Despite the lack of C-domain, the enzyme is active and prefers peptide substrates with large hydrophobic N-terminal residues. Its substrate-bound structure was determined at 1.9 Å resolution. Structural analyses supported by site directed mutagenesis and molecular dynamics simulations reveal structural features that could compensate for the lack of C-domain. A unique loop insertion (loop A) in the N-domain has important roles in gating and desolvation of active site. Three Arg residues of the catalytic domain are involved in substrate-binding roles typically played by positively charged residues of C-domain in other M1 peptidases. Further, its unique exopeptidase sequence motif, LALET, creates a more hydrophobic environment at the S1 subsite (which binds N-terminal residue of the substrate in aminopeptidases) than the more common GXMEN motif in the family. This leads to high affinity for large hydrophobic residues in the S1 subsite, which contributes towards efficient substrate binding in absence of C-domain.

Legend

Protein

Chemical

Disease

Primary Citation of related structures