5b1b image
Deposition Date 2015-12-01
Release Date 2016-09-14
Last Version Date 2023-11-08
Entry Detail
PDB ID:
5B1B
Keywords:
Title:
Bovine heart cytochrome c oxidase in the fully reduced state at 1.6 angstrom resolution
Biological Source:
Source Organism:
Bos taurus (Taxon ID: 9913)
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.19
R-Value Work:
0.16
R-Value Observed:
0.16
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 1
Gene (Uniprot):MT-CO1
Chain IDs:A, N
Chain Length:514
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 2
Gene (Uniprot):MT-CO2
Chain IDs:B, O
Chain Length:227
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 3
Gene (Uniprot):MT-CO3
Chain IDs:C, P
Chain Length:259
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 4 isoform 1, mitochondrial
Gene (Uniprot):COX4I1
Chain IDs:D, Q
Chain Length:144
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 5A, mitochondrial
Gene (Uniprot):COX5A
Chain IDs:E, R
Chain Length:105
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 5B, mitochondrial
Gene (Uniprot):COX5B
Chain IDs:F, S
Chain Length:98
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 6A2, mitochondrial
Gene (Uniprot):COX6A2
Chain IDs:G, T
Chain Length:84
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 6B1
Gene (Uniprot):COX6B1
Chain IDs:H, U
Chain Length:79
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 6C
Gene (Uniprot):COX6C
Chain IDs:I, V
Chain Length:73
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 7A1, mitochondrial
Gene (Uniprot):COX7A1
Chain IDs:J, W
Chain Length:58
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 7B, mitochondrial
Gene (Uniprot):COX7B
Chain IDs:K, X
Chain Length:49
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 7C, mitochondrial
Gene (Uniprot):COX7C
Chain IDs:L, Y
Chain Length:46
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 8B, mitochondrial
Gene (Uniprot):COX8B
Chain IDs:M, Z
Chain Length:43
Number of Molecules:2
Biological Source:Bos taurus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
FME A MET modified residue
SAC I SER modified residue
Primary Citation
The Mg2+-containing Water Cluster of Mammalian Cytochrome c Oxidase Collects Four Pumping Proton Equivalents in Each Catalytic Cycle.
J.Biol.Chem. 291 23882 23894 (2016)
PMID: 27605664 DOI: 10.1074/jbc.M115.711770

Abstact

Bovine heart cytochrome c oxidase (CcO) pumps four proton equivalents per catalytic cycle through the H-pathway, a proton-conducting pathway, which includes a hydrogen bond network and a water channel operating in tandem. Protons are transferred by H3O+ through the water channel from the N-side into the hydrogen bond network, where they are pumped to the P-side by electrostatic repulsion between protons and net positive charges created at heme a as a result of electron donation to O2 bound to heme a3 To block backward proton movement, the water channel remains closed after O2 binding until the sequential four-proton pumping process is complete. Thus, the hydrogen bond network must collect four proton equivalents before O2 binding. However, a region with the capacity to accept four proton equivalents was not discernable in the x-ray structures of the hydrogen bond network. The present x-ray structures of oxidized/reduced bovine CcO are improved from 1.8/1.9 to 1.5/1.6 Å resolution, increasing the structural information by 1.7/1.6 times and revealing that a large water cluster, which includes a Mg2+ ion, is linked to the H-pathway. The cluster contains enough proton acceptor groups to retain four proton equivalents. The redox-coupled x-ray structural changes in Glu198, which bridges the Mg2+ and CuA (the initial electron acceptor from cytochrome c) sites, suggest that the CuA-Glu198-Mg2+ system drives redox-coupled transfer of protons pooled in the water cluster to the H-pathway. Thus, these x-ray structures indicate that the Mg2+-containing water cluster is the crucial structural element providing the effective proton pumping in bovine CcO.

Legend

Protein

Chemical

Disease

Primary Citation of related structures