5YHS image
Entry Detail
PDB ID:
5YHS
Keywords:
Title:
Pyruvylated beta-D-galactosidase from Bacillus sp. HMA207, apo form
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2017-09-29
Release Date:
2018-08-29
Method Details:
Experimental Method:
Resolution:
2.50 Å
R-Value Free:
0.27
R-Value Work:
0.21
R-Value Observed:
0.22
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Pyruvylated beta-D-galactosidase
Chain IDs:A, B
Chain Length:475
Number of Molecules:2
Biological Source:Bacillus sp.
Primary Citation
Identification and characterization of a novel beta-D-galactosidase that releases pyruvylated galactose.
Sci Rep 8 12013 12013 (2018)
PMID: 30104607 DOI: 10.1038/s41598-018-30508-4

Abstact

Pyruvyl modification of oligosaccharides is widely seen in both prokaryotes and eukaryotes. Although the biosynthetic mechanisms of pyruvylation have been investigated, enzymes that metabolize and degrade pyruvylated oligosaccharides are not well known. Here, we searched for a pyruvylated galactose (PvGal)-releasing enzyme by screening soil samples. We identified a Bacillus strain, as confirmed by the 16S ribosomal RNA gene analysis, that exhibited PvGal-ase activity toward p-nitrophenyl-β-D-pyruvylated galactopyranose (pNP-β-D-PvGal). Draft genome sequencing of this strain, named HMA207, identified three candidate genes encoding potential PvGal-ases, among which only the recombinant protein encoded by ORF1119 exhibited PvGal-ase activity. Although ORF1119 protein displayed broad substrate specificity for pNP sugars, pNP-β-D-PvGal was the most favorable substrate. The optimum pH for the ORF1119 PvGal-ase was determined as 7.5. A BLAST search suggested that ORF1119 homologs exist widely in bacteria. Among two homologs tested, BglC from Clostridium but not BglH from Bacillus showed PvGal-ase activity. Crystal structural analysis together with point mutation analysis revealed crucial amino acids for PvGal-ase activity. Moreover, ORF1119 protein catalyzed the hydrolysis of PvGal from galactomannan of Schizosaccharomyces pombe, suggesting that natural polysaccharides might be substrates of the PvGal-ase. This novel PvGal-catalyzing enzyme might be useful for glycoengineering projects to produce new oligosaccharide structures.

Legend

Protein

Chemical

Disease

Primary Citation of related structures