5YAD image
Deposition Date 2017-08-31
Release Date 2018-10-03
Last Version Date 2024-10-16
Entry Detail
PDB ID:
5YAD
Title:
Crystal structure of Marf1 Lotus domain from Mus musculus
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.76 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Meiosis regulator and mRNA stability factor 1
Gene (Uniprot):Marf1
Chain IDs:A, B
Chain Length:75
Number of Molecules:2
Biological Source:Mus musculus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
MSE A MET modified residue
Primary Citation
Ribonuclease activity of MARF1 controls oocyte RNA homeostasis and genome integrity in mice.
Proc. Natl. Acad. Sci. U.S.A. 115 11250 11255 (2018)
PMID: 30333187 DOI: 10.1073/pnas.1809744115

Abstact

Producing normal eggs for fertilization and species propagation requires completion of meiosis and protection of the genome from the ravages of retrotransposons. Mutation of Marf1 (meiosis regulator and mRNA stability factor 1) results in defects in both these key processes in mouse oocytes and thus in infertility. MARF1 was predicted to have ribonuclease activity, but the structural basis for the function of MARF1 and the contribution of its putative ribonuclease domain to the mutant oocyte phenotype was unknown. Therefore, we resolved the crystal structures of key domains of MARF1 and demonstrated by biochemical and mutagenic analyses that the ribonuclease activity of MARF1 controls oocyte meiotic progression and retrotransposon surveillance. The N-terminal NYN domain of MARF1 resembles the nuclease domains of Vpa0982, T4 RNase H, and MCPIP1 and contains four conserved aspartate residues, D178, D215, D246, and D272. The C-terminal LOTUS domain of MARF1 adopts a winged helix-turn-helix fold and binds ssRNA and dsRNA. Purified MARF1 cleaved ssRNAs in vitro, but this cleavage activity was abolished by mutations of conserved aspartates in its NYN domain and truncation of the LOTUS domain. Furthermore, a point mutation in the D272 residue in vivo caused a female-only infertile phenotype in mice, with failure of meiotic resumption and elevation of Line1 and Iap retrotransposon transcripts and DNA double-strand breaks in oocytes. Therefore, the ribonuclease activity of MARF1 controls oocyte meiosis and genome integrity. This activity depends upon conserved aspartic residues in the catalytic NYN domain and the RNA-binding activity of the LOTUS domain.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback