5WYH image
Deposition Date 2017-01-13
Release Date 2018-01-24
Last Version Date 2024-03-20
Entry Detail
PDB ID:
5WYH
Title:
Crystal structure of RidL(1-200) complexed with VPS29
Biological Source:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.46 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
P 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Vacuolar protein sorting-associated protein 29
Gene (Uniprot):VPS29
Chain IDs:A, C
Chain Length:185
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:Interaptin
Chain IDs:B, D
Chain Length:198
Number of Molecules:2
Biological Source:Legionella pneumophila subsp. pneumophila ATCC 43290
Ligand Molecules
Primary Citation
Mechanism of inhibition of retromer transport by the bacterial effector RidL.
Proc. Natl. Acad. Sci. U.S.A. 115 E1446 E1454 (2018)
PMID: 29386389 DOI: 10.1073/pnas.1717383115

Abstact

Retrograde vesicle trafficking pathways are responsible for returning membrane-associated components from endosomes to the Golgi apparatus and the endoplasmic reticulum (ER), and they are critical for maintaining organelle identity, lipid homeostasis, and many other cellular functions. The retrograde transport pathway has emerged as an important target for intravacuolar bacterial pathogens. The opportunistic pathogen Legionella pneumophila exploits both the secretory and recycling branches of the vesicle transport pathway for intracellular bacterial proliferation. Its Dot/Icm effector RidL inhibits the activity of the retromer by directly engaging retromer components. However, the mechanism underlying such inhibition remains unknown. Here we present the crystal structure of RidL in complex with VPS29, a subunit of the retromer. Our results demonstrate that RidL binds to a highly conserved hydrophobic pocket of VPS29. This interaction is critical for endosomal recruitment of RidL and for its inhibitory effects. RidL inhibits retromer activity by direct competition, in which it occupies the VPS29-binding site of the essential retromer regulator TBC1d5. The mechanism of retromer inhibition by RidL reveals a hotspot on VPS29 critical for recognition by its regulators that is also exploited by pathogens, and provides a structural basis for the development of small molecule inhibitors against the retromer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures